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Abstract — With the global quantity of electronic waste (e-waste) rising every year comes the need for innovative solu-
tions to the e-waste management problems. The goal of this article is to summarize the latest research in the field of e-waste 
recognition, with a focus on embedded systems. The summary included the following parameters for each system: recogni-
tion method, hardware implementation, dataset size, number of recognizable e-waste objects, system efficiency, goal and 
application. As a result of this summary, the capabilities and limitations of these systems, as well as current research trends, 
were revealed. The main finding of this article is that it uncovered the necessity for a complete e‑waste dataset, as well as 
application optimized e-waste datasets, which will aid future research in this field.

Zusammenfassung — Wegen der Menge an Elektroschrott (E-Schrott), die weltweit jedes Jahr zunimmt, besteht der 
Bedarf an innovativen Lösungen für die Probleme des E-Schrott-Managements. Ziel dieses Artikels ist es, die neuesten 
Forschungsergebnisse auf dem Gebiet der E-Schrott-Erkennung zusammenzufassen, wobei der Schwerpunkt auf einge-
betteten Systemen liegt. Die Zusammenfassung enthält die folgenden Parameter für jedes System: Erkennungsmethode, 
Hardware-Implementierung, Größe des Datensatzes, Anzahl der erkennbaren E‑Schrott‑Objekte, Systemeffizienz, Ziel und 
Anwendung. Als Ergebnis dieser Zusammenfassung wurden die Fähigkeiten und Grenzen dieser Systeme, sowie die aktu-
ellen Forschungstrends, aufgezeigt. Das wichtigste Ergebnis dieses Artikels ist, dass er die Notwendigkeit eines vollstän-
digen Datensatzes für Elektroschrott sowie anwendungsoptimierter Datensätze für Elektroschrott aufgedeckt hat, die die 
künftige Forschung auf diesem Gebiet unterstützen werden.

I.	  Introduction

There are many different aspects to the global e‑waste pro-
blem. Firstly, e‑waste has no globally accepted definition, 
which makes it difficult to classify. Secondly, e‑waste contains 
a lot of hazardous materials which pose a threat to workers 
and the environment if not handled properly. However, e‑wa-
ste also contains a lot of valuable and non‑renewable materials 
which could be lost forever if not recycled properly. Further-
more, e‑waste is difficult to track, with over 80% of the global 
e‑waste quantity having an unknown status. What’s more, the 
global quantity of e‑waste is rising every year, with some ex-
perts estimating that it will reach 74.7 million metric tons (Mt) 
by the year 2030 [1]. One reason for the rising trend of the 
global e‑waste quantity is the large amount of manual labor 
still required to collect, document, separate, sort, disassemble 
and recycle it [2]. Two of the main technical limiting factors to 
automating these processes are the complexity of the e‑waste 
stream and the lack of machine‑readable features on the e‑wa-
ste objects. Computer vision models for e‑waste recognition 
are one possible solution to these problems. Recent advance-
ments in AI accelerated embedded systems and the reduced 
size of computer vision models have created new opportuni-
ties to tackle the global e‑waste problem. Due to their small 
size and low power consumption, embedded systems can be 
installed in many different locations which is beneficial when 
managing e‑waste, because e‑waste is commonly found on 
the streets or improperly disposed of with general waste. The 

advantages of embedded computer vision systems for e‑waste 
recognition could be used to reduce the amount of e‑waste with 
unknown status and to actually measure how much e‑waste is 
lost in general waste containers, instead of just relying on stati-
stical approximations. That is why embedded computer vision 
systems were chosen as the focus of this article.

II.	 Methodology

This structured literature review was performed using the 
PICO framework with the goal of gaining a better understan-
ding of how the latest embedded systems for e‑waste reco-
gnition were designed. For that reason, a research annotation 
template was created that contained seven questions for each 
article that was reviewed: what method was used to recognize 
the e‑waste, what hardware, what dataset, how many e‑waste 
object types (i.e., classes) can the system recognize, how effici-
ently does the system perform its task, for what purpose was 
the e‑waste recognition system developed and in which e‑wa-
ste management process was it applied. The keyword represen-
tations of these questions were used in the header of Table I to 
document the respective answers for every reviewed article.

The search strategy that was utilized for this literature re-
view involved using the following search terms: “e‑waste OR 
WEEE AND recognition OR computer vision OR machine 
learning OR identification AND Embedded OR Microcontrol-
ler”, where WEEE stands for Waste from Electrical and Elec-
tronic Equipment. The searches were conducted during Octo-
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ber 2023 in the web search engine Google Scholar. During this 
time, the aforementioned search terms yielded 5420 results, 
after a search filter was applied to show results from the year 
2015 or newer. However, some of the reviewed articles are ol-
der, because they were found to be appropriate for this study. 
These older articles were found in the reference sections of the 
filtered set of articles.

III.	 Results

Table I. includes information that is only relevant to the pro-
cess of e‑waste recognition. Some of the hardware and softwa-
re components of some of the referenced sources were omitted 
due to their functionality not being related to the process of 
recognizing e‑waste objects.

table 1	 Summary of the Embedded Systems for E-Waste Recognition

Reference Method Hardware Dataset E‑waste Classes Efficiency Goal Application

[3] Convolutional Neural 
Network (CNN):

- ResNet18, retrained 
using transfer learning

Camera: 
- Logitech C615

Computer: 
- NVIDIA Jetson 
Nano Dev Kit

Custom Dataset:
- 1000 labelled 
e‑waste images

8
- Resistor
- Capacitor
- IC voltage 
regulator
- LCD
- Relay
- Circuit board
- Node MCU
- Battery

Average Accuracy: 
93%

E‑Waste 
Component 
Recognition

E‑Waste Sorting:

- Sort e‑waste 
components into 
two categories 
depending on 
whether they 
contain precious 
metals or not

[4] Support Vector Machine 
(SVM):

- contour recognition to 
recognize defects in the 
object

- 2D Camera,
- 3D Camera,
- RFID Scanner for 
object recognition

- Unspecified 
Computer

‑ 5
- Li‑ion car battery
- Battery cell
- Terminal
- Terminal with 
connecting port
- Connectors

‑ E‑Waste 
Component 
Recognition:

- Recognize 
Li‑ion car 
battery 
components

E‑Waste 
Disassembly:

- Automated 
Li‑ion car battery 
disassembly and 
recycling

[5] Contour detection,

- CNN: RetinaNet50
- CNN: YOLOv5x
retrained using transfer 
learning

- Intel Realsense 
D435 camera

- No information 
on computing 
hardware

- COCO dataset [6]
 combined with 
custom dataset

13
- Screws
- Motherboard
- Connector
- CPU
- Fan
- Hard Disk
- Motherboard
- RAM
- SSD
- Battery
- WLAN
- CD‑ROM
-Laptop-Back- 
Cover

Average Precision:
- RetinaNet50: 
69.2%
- YOLOv5x: 72.2%

Average Recall:
- RetinaNet50: 
51.3%
- YOLOv5x: 55%

E‑Waste 
Component 
Recognition:

- Laptop 
components 
classification 
and localiza-
tion

E‑Waste Sorting 
and Disassembly:

- Automatic disas-
sembly of laptop 
components

[7] CNN:

- Mask R‑CNN with FPN
- Mask‑R-CNN with FPN 
and Adaptive Pooling
- Mask‑R-CNN with FPN 
and Adaptive Pooling a
nd Edge Detection

‑ Custom dataset:
- 533 annotated 
images of 10 
cellphones and t
heir components. 
After including 
augmented copies 
of these images, 
the dataset has a 
total of 4000 
images

11
- Cellphone 
components and 
parts, no further 
details were given

Average Precision:
- MASK R‑CNNwith 
FPN: 54.9%

- Mask‑RCNN with 
FPN and Adaptive 
Pooling: 56.2%

- Mask‑RCNN with 
FPN and Adaptive 
Pooling and Edge 
Detection: 58.7%

E‑Waste 
Component 
Recognition

E‑Waste 
Disassembly:

- Autonomous 
robotic 
disassembly of 
dense smartphone 
circuit boards

[8] Contour detection al-
gorithm

- Contour Vision 
Sensor IFM 
O2D220

- No information 
on computing 
hardware

‑ 4
Motherboard 
Components:
- CPU
- “CHIP1”
- “CHIP2”
- “CHIP3”
- “CHIP4”

Average Accuracy: 
91.75%

Latency: 1.2s to 
recognize one 
component

E‑Waste 
Component 
Recognition

E‑Waste Sorting:

- Sorting mother-
board components
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Reference Method Hardware Dataset E‑waste Classes Efficiency Goal Application

[9] Combination of con-
tour, gray value, and 
knowledge‑based object 
recognition

Stereo matching for 
position measurement 
with implicit detection 
of occlusions

- Stereo camera 
vision sensor

- UltraSparc pro-
cessor

‑ 2
- Car wheel
- Nuts of the car 
wheel

Average Accuracy: 
98%

Latency: 15s on a 
wheel with four 
bolts

E‑Waste 
Component 
Recognition

E‑Waste Disas-
sembly:

- Autonomous ro-
botic disassembly 
of car wheels

[10] CNN:

- Modified Residual 
neural network 50 
(Mod‑ResNet50), re-
trained using transfer 
learning

- Unspecified 
webcam

- No information 
on computing 
hardware

Custom dataset:
- 8000 images of 
e‑waste

8
- Computers
- Keyboards
- Motherboards
- Mobile phones
- Refrigerators
- Laptops
- Mice
- Radios
- Televisions

Average Accuracy: 
96%

E‑Waste 
Device Reco-
gnition

E‑Waste Collec-
tion:

- Mobile robot 
for autonomous 
e‑waste collection

[11] - CNN for object reco-
gnition,

- R‑CNN for size esti-
mation

- Smartphone 
camera for image 
capture and com-
munication with 
server

- Cloud server 
performs e‑waste 
recognition

Custom dataset:
- 210 images of 
e‑waste

3
- Refrigerators
- Washing ma-
chines
- Monitors

Average Accuracy:
90% ‑ 96.7%

E‑Waste 
Device Reco-
gnition

E‑Waste Collec-
tion:

- Automatic classi-
fication of e‑waste 
for improved coll-
ection planning

[12] CNN:

- Fractional Horse Herd 
Gas Optimization‑based 
Shepherd Convolutional 
Neural Network (FrHH-
GO‑based ShCNN)

- IoT node for 
image capture and 
communication 
with server
- Cloud server 
performs e‑waste 
recognition
- Tested on PC with 
Intel Core i‑3 CPU, 
and 2GB RAM

Custom dataset:
- 807 E‑waste 
images

6
- Mobile phone
- Keyboard
- Mouse
- Monitor
- Laptop
- Bottles

Consumed energy:  
0.301 J

Delay: 0.666 s

Accuracy: 0.950

Sensitivity:  0.934

Specificity: 0.967

E‑Waste 
Device Reco-
gnition

E‑waste manage-
ment:

- Enhance the so-
cial, environmen-
tal, and economic 
sustainability in 
emerging econo-
mies

[13] CNN:

- EfficientDet D0 
512x512 [14]
, retrained using 
few‑shot learning

‑ Combination of 
two datasets: 
- [15] and [16]
 as well as images 
downloaded from 
the internet. The 
resulting dataset 
has 990 images. 
After including 
augmented copies 
of these images, 
the dataset has 
a total of 2376 
images
- The model was 
pre‑trained on the 
COCO 2017 dataset 
[17], [6]

7
- Battery
- Bulb
- Keyboard
- Laptop
- Monitor
- Mobile Phone
- Mouse

Loss: 0.227 with 
Adam optimizer

Loss: 0.254 with 
Momentum opti-
mizer

E‑Waste 
Device Reco-
gnition

E‑Waste Collec-
tion:

- Safe disposing 
and recycling of 
e‑waste

[18] FAST R‑CNN Laptop
- CPU: Intel Core i5
- GPU: Nvidia 
GeForce 940 MX 
2GB

Two custom data-
sets called:
- Standard dataset 
and 
- Non‑standard 
Dataset

‑ Accuracy with 
standard dataset: 
88%

Accuracy with 
non‑standard 
dataset: 86%

E‑Waste 
Device Reco-
gnition

E‑Waste Collec-
tion:
- Smartphone 
application which 
aims to help users 
to properly recycle 
their e‑waste
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Reference Method Hardware Dataset E‑waste Classes Efficiency Goal Application

[2] Custom CNN - Webcam Logi-
tech C920x HD Pro

- Unspecified 
laptop

Custom dataset: 
164 images

4
- Mobile phones
- Batteries
- Remote control 
devices
- Light bulbs

Training accuracy: 
96.9%

Validation accura-
cy: 93.9%.

E‑Waste 
Device Reco-
gnition

E‑Waste Sorting:

- Robotic e‑waste 
sorting system to 
incentivize formal 
recycling practices

[19] CNN:

- Single Shot Multibox 
Detector (SSD) Lite‑Mo-
bileNet‑v2

- Pi Camera 5MP

- Raspberry Pi 3 
Model B v1.2

MSCOCO dataset:
Estimated 328000 
images with 91 
object types [6]
, of which at least 
10 are e‑waste 
types [19]

10:
- Central Proces-
sing Unit (CPU)
- Motherboard
- Smartphone
- Microcontroller
- Batteries
- Laptop
- Television
- Mouse
- Remote Control
- Electronic Com-
ponents

Average Accuracy: 
62.2%

E‑Waste 
Device and 
Component 
Recognition

E‑Waste Collec-
tion:

- Smart e‑waste 
bin for improved 
e‑waste collection 
planning

[20] CNN:

- YOLOv4

- Raspberry Pi 
Camera

- Raspberry Pi 3 
Model B

Custom dataset 4
- Cellphone
- Battery
- Charger
- Other

Average Accuracy: 
93.33%

Precision: 97.84%

Recall: 97.13%

E‑Waste 
Device Reco-
gnition

E‑Waste Collection 
and Sorting:

- Smart e‑waste 
bin which incen-
tivizes users to 
recycle while also 
making it easier 
for them to do so 
by automating the 
e‑waste sorting 
process

[21] CNN:

- YOLOv5s
- YOLOv7‑tiny and
- YOLOv8s retrained 
using transfer learning

- PiCam 5MP: 
image capture

- Raspberry Pi 4: 
object recognition

- ThingSpeak 
Cloud Platform: 
Storage and Ana-
lysis

Subset of the Open 
Images Dataset v7: 
4000 annotated 
images

4
- Monitor
- Keyboard
- Mouse
- Headphone

Precision:
- YOLOv5s: 0.752
- YOLOv7‑tiny: 
0.755
- YOLOv8s: 0.742

Recall:
- YOLOv5s: 0.679
- YOLOv7‑tiny: 
0.709
- YOLOv8s: 0.708

E‑Waste 
Device Reco-
gnition

E‑Waste Collec-
tion:

- Smart e‑waste 
bin with sophisti-
cated condition 
monitoring, e‑wa-
ste object recogni-
tion and internet 
connection for 
improved collec-
tion planning

[22] CNN:

- AlexNet, retrained 
using transfer learning

Computer:
- CPU: Intel Core i5,
- GPU: Asus Nvidia 
GeForce RTX 2070S 
8GB,
- OS: Windows 
10 x64

ImageNet combi-
ned with a custom 
dataset with 650 
RGB images. After 
including aug-
mented copies of 
these images, the 
custom dataset 
has a total of 5850 
images

12
- Smartphone 
models from six 
different brands

Accuracy: 98% E‑Waste 
Device Reco-
gnition

E‑Waste Sorting:

- Automated 
e‑waste classi-
fication in support 
of circular smart 
cities
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Reference Method Hardware Dataset E‑waste Classes Efficiency Goal Application

[23] CNN:

- MobileNetV2
- VGG19
- DenseNet201
- ResNet152V2 
- InceptionResNetV2
retrained using transfer 
learning

Android smart-
phone

WasteNet:
33520 images. It is 
a combination of 
these six datasets: 
- Trashnet [24]

- Drinking waste 
classification [25]

- Waste Classifica-
tion Data  [26]

- Open Recycle 
Dataset [27]

- Garbage In Ima-
ges (GINI) Dataset 
[28], [29]

- E-waste stock 
photos from Getty 
Images [30]

7
- E‑waste
- Garbage
- Glass
- Metal
- Organic
- Paper
- Plastic

Highest Accuracy: 
InceptionRes-
NetV2 at 90%

Lowest Loss: In-
ceptionResNetV2 
at 0.38

Smallest Size: 
MobileNetV2 at 
2.6 MB

Lowest Latency: 
MobileNetV2 at 
521 ms

E‑Waste 
Material 
Recognition

E‑Waste Collec-
tion:

- Smartphone 
application that 
combines e‑waste 
recognition with 
gamification ele-
ments to motivate 
users to recycle 
their e‑waste

[31] Triangulation scan - BASLER 
avA1000‑120 km/
kc 3D color area 
scan camera,

- Laser emitter

‑ 5 kinds of waste 
mixtures:
‑ non‑ferrous me-
tal mixture which 
contains copper, 
brass and alumi-
num particles
‑ polymer mixture 
which contains po-
lypropylene (PP) 
particles
‑ polymer mixture 
which contains 
Acrylonitrile 
butadiene styrene 
(ABS) particles
‑ standard parti-
cles which contain 
euro coins
‑ standard parti-
cles which contain 
bottle covers

Sorting rate for 
non‑ferrous metal 
mixture: 98%

Sorting rate for 
the two polymer 
mixtures: 99% 
*except for black 
colored particles 
which absorbed 
part of the red 
laser

Sorting rate for 
euro coins: 99%

Sorting rate for 
bottle covers: 91%

E‑Waste 
Material 
Recognition

E‑Waste Sorting:

- Mechanical sepa-
rating system for 
shredded e‑waste 
particles

A.	 E-Waste Recognition Methods
As shown in Fig. 1, the most common method for e-waste re-

cognition is by training a convolutional neural network (CNN) 
to do so. 

From the 14 reviewed systems that rely on a CNN, nearly 
half of them, six to be exact, have been trained on some large 
generic dataset and then re-trained with the transfer learning 
technique on a small e-waste dataset, thus gaining the abili-

ty to recognize these e-waste objects. The majority of the re-
viewed CNNs, seven, were trained on a small custom e-waste 
dataset or a large dataset which contains many object types, 
some of which are e-waste (e.g., [19]). Dassi and Sundareson 
demonstrated in [13] the use of the few‑shot learning techni-
que to train their EfficientDet CNN to recognize seven types 
of e-waste. 

B.	 E-Waste Recognition Goals
Three main goals were identified for the e-waste recognition 

systems in the reviewed literature: Material Recognition, Com-
ponent Recognition and Device Recognition. Their proporti-
ons are shown in Fig. 2. 

The majority of the reviewed systems, ten, aim at recogni-
zing e-waste devices, however the system capable of recogni-
zing the most devices is only capable of recognizing 12 e-wa-
ste devices [22]. 

E-waste component recognition is less popular, but this cate-

Fig 1. Methods for e‑waste recognition, their number of occurrences 
in the reviewed literature and overall percentage.
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gory contains the system with the most classes, 13, presented 
by Bassiouny et al., [5]. 

Fig 2.  Goals of the reviewed e‑waste recognition systems, their 
number of occurrences in the reviewed literature and overall 

percentage.

IV.	 E-Waste Recognition Applications

Electronic waste management has three main stages: pre‑pro-
cessing, processing and post‑processing. Each stage has its 
own e-waste management processes, described in Table II.

TABLE I. 	 E-Waste Management Processes Overview

Stage E-Waste Management Process

Pre-Proces-
sing

Collection

Transportation

Processing

Separation (from general waste)

Documentation

Sorting Shredding Incineration Acid lea
ching

Bio-lea
ching 

Disassem-
bling

Sorting 
fractions - - -

Post-Proces-
sing

Component
recovery - - - -

Material recovery

The success of any given system depends on how well it has 
been optimized for its specific application. E-waste recognition 
systems can be applied in any of the processes mentioned in 
Table II, however most of the reviewed systems were designed 
for the purposes of three e-waste management processes: coll-
ection, sorting and disassembly, as it is shown in Fig. 3.

Fig 3. E‑waste management processes where the reviewed e‑waste 
recognition systems are applied, their number of occurrences in the 

reviewed literature and overall percentage.

A.	 E-Waste Classes
The size of the dataset has no apparent influence on the num-

ber of e-waste object types (i.e., classes) that the system can re-
cognize. The correlation between these two system parameters 
can be seen in Fig. 4. There are systems trained on a dataset 
with a couple of hundred images which can recognize more 
e-waste objects than a system trained on a dataset with a coup-
le of thousand images and vice versa. This is due to the fact 
that some convolutional neural networks are trained using the 
transfer learning technique. This technique allows the devel-
oper to re‑train a CNN on a new dataset, which in the reviewed 
cases was smaller than the base dataset the CNN was originally 
trained on. 

Fig 4. Correlation between the dataset size and the number of 
recognizable e‑waste object types (i.e., classes) for each system in 

the reviewed literature, where this information was available.

It is apparent, however, that systems using convolutional 
neural networks for e-waste recognition are capable of reco-
gnizing more e-waste objects than systems which use other 
recognition methods, as shown in Fig. 5.

Fig 5. Correlation between the recognition method and the number 
of recognizable e‑waste object types (i.e., classes) for each system in 

the reviewed literature.

V.	 Discussion

From the reviewed literature, the system capable of recogni-
zing the most e-waste devices is only capable of recognizing 
12 e-waste devices. This is significantly less than the appro-
ximately 900 e-waste product types described in the UNU-
KEYS classification [32]. If a system’s goal is to recognize 
individual devices, the number of classes must be many times 
higher in order to achieve practical results. This would require 
a larger dataset. The reviewed systems demonstrate that it is 
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possible to train small models on large datasets and run them 
on embedded hardware (e.g., [19]), however, a complete e-
waste dataset, containing images of every e-waste device type, 
does not yet exist. One possible solution might be to use the 
UNU-KEYS classification [32] to build such a dataset, whe-
re each class represents one UNU‑KEY. The benefits of using 
the UNU-KEYS classification are that it covers all possible e-
waste devices and that the UNU‑KEYS are cross‑referenced to 
other notable classifications such as the Harmonized Commo-
dity Description and Coding System (HS) and the European 
Union’s WEEE directive [33].

An alternative approach to solving the e-waste recognition 
problem might be to infer the type of e-waste device based 
on its composition. For example, instead of training a CNN to 
recognize specific devices, it can be trained to recognize spe-
cific materials or components in order to infer what the device 
that contains them actually is. Currently, all of the reviewed 
systems for e‑waste material recognition are focused on the 
collection or sorting of the recognized materials, whereas all of 
the reviewed systems for e-waste component recognition are 
focused on the collection, sorting or disassembly of the reco-
gnized components. No examples were found of an embedded 
system which is able to infer the e‑waste device type based on 
its material composition or its components. The assumed bene-
fit of this generic approach is that it might be more reliable than 
direct device recognition when the e‑waste device is deformed. 
Furthermore, a dataset of e-waste materials or components 
might be smaller, and therefore easier to create, than a dataset 
containing all possible e-waste device types.

With regards to direct device recognition using a CNN, the 
size and structure of the dataset depends on the application of 
the system. If the system is expected to work in an environment 
where only small e-waste devices can be found, the model 
could just be trained on this type of e-waste. For that purpose, 
a dataset of only small e-waste devices should be created.

The e-waste dataset structure also depends on geographical 
location because different countries have different definitions 
for e-waste. For example, in the European Union, the WEEE di-
rective covers six categories of e-waste: temperature exchange 
equipment, screens, lamps, large equipment, small equipment 
and small IT and telecommunication equipment [34]. In the 
Japan however, the Home Appliance Recycling Law defines 
four categories for e-waste: air conditioners, televisions (CRT, 
LCD/plasma), refrigerators/freezers and washing machines/
clothes dryers, machine translated from [35].

In summary, building a complete e-waste dataset would be 
beneficial for e-waste recognition systems, regardless of their 
application, however that would be a very large undertaking. 
Alternative approaches are to create application specific data-
sets, location specific datasets or to use alternative e-waste re-
cognition methods, such as inferring the type of e-waste device 
based on its material or component composition.

VI.	 Conclusion

In this article, 18 embedded systems for e-waste recogniti-
on were analyzed and compared according to the method they 
used, their hardware implementation, dataset size, number of 
recognizable e-waste objects, efficiency, goal and application. 
The key takeaway from the performed literature review is that 
embedded systems are capable of recognizing e‑waste effici-
ently, however they are limited in their recognition capabilities 
by the lack of a complete e-waste dataset. Although creating 

such a dataset is possible, it would be a large undertaking con-
sidering the many different types of e-waste devices. There-
fore, alternative methods were also suggested such as creating 
application specific e-waste datasets and location specific e-
waste datasets. Lastly, an alternative method for e-waste reco-
gnition was proposed which suggests recognizing the material 
or component composition of an e‑waste device in order to 
infer its type. 

VII.	Acknowledgement

This research is within the frames of the contract № 
232ПД0007‑03, Scientific and Research Sector at the Techni-
cal University of Sofia.

VIII.	References

[1] V. Forti, C. P. Baldé, R. Kuehr, and G. Bel, “The Global E-waste 
Monitor 2020,” p. 121.

[2] E. P. Zhou, “Machine Learning For The Classification And Se-
paration Of E-Waste,” in 2022 IEEE MIT Undergraduate Research 
Technology Conference (URTC), Cambridge, MA, USA: IEEE, Sep. 
2022, pp. 1–5. doi: 10.1109/URTC56832.2022.10002242.

[3] S. Elangovan, S. Sasikala, S. Arun Kumar, M. Bharathi, E. Na-
veen Sangath’, and T. Subashini, “A Deep Learning Based Multiclass 
Segregation of E-waste using Hardware Software Co-Simulation,” 
J. Phys. Conf. Ser., vol. 1997, no. 1, p. 012039, Aug. 2021, doi: 
10.1088/1742-6596/1997/1/012039.

[4] M. Weyrich and Y. Wang, “Architecture design of a vision-based 
intelligent system for automated disassembly of E-waste with a case 
study of traction batteries,” in 2013 IEEE 18th Conference on Emer-
ging Technologies & Factory Automation (ETFA), Cagliari, Italy: 
IEEE, Sep. 2013, pp. 1–8. doi: 10.1109/ETFA.2013.6648043.

[5] A. M. Bassiouny, A. S. Farhan, S. A. Maged, and M. I. Awaad, 
“Comparison of Different Computer Vision Approaches for E-waste 
Components Detection to Automate E-waste Disassembly,” in 2021 
International Mobile, Intelligent, and Ubiquitous Computing Con-
ference (MIUCC), Cairo, Egypt: IEEE, May 2021, pp. 17–23. doi: 
10.1109/MIUCC52538.2021.9447637.

[6] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context.” 
arXiv, Feb. 20, 2015. Accessed: Oct. 30, 2023. [Online]. Available: 
http://arxiv.org/abs/1405.0312

[7] A. Jahanian, Q. H. Le, K. Youcef-Toumi, and D. Tsetserukou, “See 
the E-Waste! Training Visual Intelligence to See Dense Circuit Boards 
for Recycling”.

[8] R. Laszlo, R. Holonec, R. Copindean, and F. Dragan, “Sorting 
System for e-Waste Recycling using Contour Vision Sensors,” in 
2019 8th International Conference on Modern Power Systems (MPS), 
Cluj Napoca, Romania: IEEE, May 2019, pp. 1–4. doi: 10.1109/
MPS.2019.8759739.

[9] U. Büker et al., “Vision-based control of an autonomous disassem-
bly station,” Robot. Auton. Syst., vol. 35, no. 3–4, pp. 179–189, Jun. 
2001, doi: 10.1016/S0921-8890(01)00121-X.

[10] A. Shreyas Madhav, R. Rajaraman, S. Harini, and C. C. Kiliroor, 
“Application of artificial intelligence to enhance collection of E-wa-
ste: A potential solution for household WEEE collection and segre-
gation in India,” Waste Manag. Res. J. Sustain. Circ. Econ., vol. 40, 
no. 7, pp. 1047–1053, Jul. 2022, doi: 10.1177/0734242X211052846.

[11] P. Nowakowski and T. Pamuła, “Application of deep learning ob-
ject classifier to improve e-waste collection planning,” Waste Manag., 
vol. 109, pp. 1–9, May 2020, doi: 10.1016/j.wasman.2020.04.041.



FDIBA Conference Proceedings, vol. 7, 2023120

[12] P. Ramya, R. V, and B. R. M, “E-waste management using hy-
brid optimization-enabled deep learning in IoT-cloud platform,” Adv. 
Eng. Softw., vol. 176, p. 103353, Feb. 2023, doi: 10.1016/j.advengs-
oft.2022.103353.

[13] R. Dassi and P. Sundareson, “IEEE CTSoc 2020 Remote Intern-
ship Project- Object detection for E-waste in Indian context.” Oct. 
11, 2023. Accessed: Oct. 11, 2023. [Online]. Available: https://github.
com/prabindh/ctsoc-ewaste

[14] M. Tan, R. Pang, and Q. V. Le, “EfficientDet: Scalable and Effici-
ent Object Detection.” arXiv, Jul. 27, 2020. Accessed: Oct. 30, 2023. 
[Online]. Available: http://arxiv.org/abs/1911.09070

[15] “waste_pictures.” Accessed: Oct. 30, 2023. [Online]. Available: 
https://www.kaggle.com/datasets/wangziang/waste-pictures

[16] “Starter: e-waste dataset 93b07fb8-a.” Accessed: Oct. 30, 2023. 
[Online]. Available: https://kaggle.com/code/kerneler/starter-e-waste-
dataset-93b07fb8-a

[17] “COCO 2017 Dataset.” Accessed: Oct. 30, 2023. [Online]. Avai-
lable: https://www.kaggle.com/datasets/awsaf49/coco-2017-dataset

[18] K. Acharekar, P. Khedekar, J. Dsouza, and S. Vaidya, “Machine 
Learning based RecyClick: Recycle At A Click,” in 2020 4th Inter-
national Conference on Trends in Electronics and Informatics (ICO-
EI)(48184), Tirunelveli, India: IEEE, Jun. 2020, pp. 927–933. doi: 
10.1109/ICOEI48184.2020.9142933.

[19] K. N. A. Rani et al., “Mobile Green E-Waste Management Sy-
stems using IoT for Smart Campus,” J. Phys. Conf. Ser., vol. 1962, 
no. 1, p. 012056, Jul. 2021, doi: 10.1088/1742-6596/1962/1/012056.

[20] G. A. Sampedro, R. G. C. Kim, Y. J. Aruan, D.-S. Kim, and J.-M. 
Lee, “Smart E-Waste Bin Development Based on YOLOv4 Model,” 
in 2021 1st International Conference in Information and Computing 
Research (iCORE), Manila, Philippines: IEEE, Dec. 2021, pp. 125–
128. doi: 10.1109/iCORE54267.2021.00041.

[21] D. Voskergian and I. Ishaq, “Smart e-waste management system 
utilizing Internet of Things and Deep Learning approaches,” J. Smart 
Cities Soc., vol. 2, no. 2, pp. 77–98, Aug. 2023, doi: 10.3233/SCS-
230007.

[22] N. Baker, P. Szabo-Müller, and U. Handmann, “Transfer lear-
ning-based method for automated e-waste recycling in smart cities,” 
EAI Endorsed Trans. Smart Cities, p. 169337, Jul. 2018, doi: 10.4108/
eai.16-4-2021.169337.

[23][23]	 O. Ekundayo, L. Murphy, P. Pathak, and P. Stynes, “An On-
Device Deep Learning Framework to Encourage the Recycling of Wa-
ste,” in Intelligent Systems and Applications, vol. 296, K. Arai, Ed., in 
Lecture Notes in Networks and Systems, vol. 296. , Cham: Springer 
International Publishing, 2022, pp. 405–417. doi: 10.1007/978-3-030-
82199-9_26.

[24] G. Thung, “trashnet.” Sep. 27, 2023. Accessed: Oct. 16, 2023. 
[Online]. Available: https://github.com/garythung/trashnet

[25] A. Serezhkin, “Drinking Waste Classification.” Accessed: Oct. 
30, 2023. [Online]. Available: https://www.kaggle.com/datasets/arka-
diyhacks/drinking-waste-classification

[26] S. Sekar, “Waste Classification Data.” Accessed: Sep. 22, 2023. 
[Online]. Available: https://www.kaggle.com/datasets/techsash/wa-
ste-classification-data

[27] V. Evard and M. Smirnov, “Open Recycle Dataset.” Open Re-
cycle Community, Sep. 17, 2023. Accessed: Oct. 30, 2023. [Online]. 
Available: https://github.com/openrecycle/dataset

[28] G. Mittal, K. B. Yagnik, M. Garg, and N. C. Krishnan, “Garbage 
In Images (GINI) Dataset.” Aug. 30, 2023. Accessed: Oct. 30, 2023. 
[Online]. Available: https://github.com/spotgarbage/spotgarbage-
GINI

[29] G. Mittal, K. B. Yagnik, M. Garg, and N. C. Krishnan, “Spot-
Garbage: smartphone app to detect garbage using deep learning,” in 
Proceedings of the 2016 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing, Heidelberg Germany: ACM, Sep. 
2016, pp. 940–945. doi: 10.1145/2971648.2971731.

[30] “3,800 E Waste Stock Photos - Getty Images.” Accessed: Oct. 
30, 2023. [Online]. Available: https://www.gettyimages.ie/photos/e-
waste

[31] J. Huang, T. Pretz, and Z. Bian, “Intelligent solid waste proces-
sing using optical sensor based sorting technology,” in 2010 3rd In-
ternational Congress on Image and Signal Processing, Yantai, China: 
IEEE, Oct. 2010, pp. 1657–1661. doi: 10.1109/CISP.2010.5647729.

[32] F. Wang, J. Huisman, K. Balde, and A. Stevels, “A systematic and 
compatible classification of WEEE,” p. 6.

[33] Vanessa Forti, Kees Baldé, and Ruediger Kuehr, “E-waste Stati-
stics: Guidelines on Classifications, Reporting and Indicators, second 
edition.,” United Nations University, ViE – SCYCLE, Bonn, Germa-
ny, 2018.

[34] “Directive 2012/19/EU of the European Parliament and of the 
Council of 4 July 2012 on waste electrical and electronic equipment 
(WEEE) (recast).” Accessed: Oct. 20, 2022. [Online]. Available: 
http://data.europa.eu/eli/dir/2012/19/2018-07-04

[35] “Home Appliance Recycling Law.” Accessed: Nov. 10, 2023. 
[Online]. Available: https://www.meti.go.jp/policy/it_policy/kaden_
recycle/index.html


