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Abstract — This paper overviews the development of the quantum information technology and the quantum
computing over the years, highlighting its potential promising applications in different technological clusters.
This paper provides brief description of the quantum computing and the most significant differences with the
classical computer systems and technologies. Over 500 different articles, papers and some thesis dissertations
in the field of Quantum computing and Quantum algorithms have been reviewed and classified in 8 different
technological clusters. Combined together they form the scientific field of Quantum Information Technology.

Zusammenfassung — Dieser Artikel gibt einen berblick ber die Entwicklung der Quanteninformations-
technologie und des Quantencomputers im Laufe der Jahre und beleuchtet die potenziellen vielversprechenden
Anwendungen in verschiedenen Technologieclustern. Dieser Artikel bietet eine kurze Beschreibung des Quan-
tencomputers und der wichtigsten Unterschiede zu den klassischen Computersystemen und -technologien. ber
500 verschiedene Artikel, Artikel und einige Dissertationen im Bereich Quantum Computing und Quantum-
Algorithmen wurden berprft und in 8 verschiedene technologische Cluster eingeteilt. Zusammen bilden sie
das wissenschaftliche Gebiet der Quanteninformationstechnologie.

I. Introduction.

For source of information for this paper has been used
the Cornel University Library and its search engine, which
can be found at the following web site: https://arxiv.org
Formerly understood only by the physicists, now everybody
starts realizing the huge potential of the quantum comput-
ing. The quantum computer follows the laws of quantum
mechanics - a branch of physics, which unveils how the
world works on very low particle level. At so low level, the
particles have strange (for ordinary people) behavior ( they
act simultaneously as wave and particle), taking one than
more states at the same moment of time. Also the particles
are acting together even if they are on a very big distance
(for the nowadays understandings) one from another. The
quantum computing is using these quantum physics laws to
create novel, different way of computing and information
processing, which is very promising.

In the context of Quantum computing, the convergence
between the following technological clusters: Artificial In-
telligence, Computational complexity, Cryptography and
security, Data structures and algorithms, Emerging tech-
nologies, Logic in computer science, Neural and evolution-
ary computing, System and control (see 1), gives the quan-
tum computing field the ability to grow with very fast
speed, especially in the last 10 years, when the techno-
logical sector has huge growth impact on the economies of
the leading countries in the world.

Fig. 1. Number of papers reviewed in the following technological
clusters: 1. Artificial Intelligence 2. Computational Complexity 3.
Cryptography and Security 4. Data Structures and Algorithms 5.
Emerging Technologies 6. Logic in Computer Science 7. Neural and
Evolutionary Computing 8. Systems and Control
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Fig. 2. Papers published in the Artificial Intelligence cluster:
1. In the period 2006-2017
2. In the period 1999-2005

II. Technological Clusters Development

Through The Years.

The development of programmable quantum processors
made with silicon has taken a few steps forward for the last
few years. The most significant achievement recently is the
breakthrough of IBM in development of a quantum com-
puter, which can handle 50 qubits, announced at the IEEE
Industry Summit on the Future of Computing in Washing-
ton D.C. Asides from the 50 qubit device, IBM have also a
20 and 14 qubit devices, which are available for use through
the IBM Q Network. This hardware development gives a
push to the software developers and researchers, who want
to create algorithms and software running on a quantum
processor. As said before, there is a convergence between
some technological clusters and the quantum computing,
which brings out faster growth in both the technological
cluster and the quantum computing area.

III. Quantum Artificial Intelligence.

The artificial intelligence consists of many different sub-
fields, which makes it extremely interesting and diversi-
fied. The traditional problems, which AI solves, include
knowledge, reasoning, planning, learning, perception, nat-
ural language processing. Even in this century, when the
computer processing power has increased incredibly, it is
still the limitation for the development of the most complex
artificial intelligence systems. Here comes the quantum
computing to help with its incredible hypothetical speedup
advantage over the classical computer in a certain field [1]–
[5], they could be of great help to the researchers.

The first papers (reviewed in the process of writing this
article), which investigate the quantum search problem give
a solution, which could be applied to highly constrained
problems [6]. A big growth of the number of the pub-
lished papers is noticeable in the last decade (2006-2017).
Starting with the context of classical uncertainty combined
with the theory of quantum computing, where quantum
mechanical dependencies had been described using a novel
class of graphical representations, called Markov Entan-
glement Networks [7], through the application of Markov
network in quantum statistical physics [8], clustering [9],
reversible boolean circuits synthesys [10], medicine [11],
planar graphs [12] and finishing with presentation of new
opportunities for optimization algorithms [13], including
ising processing units [14], discrete [15], [16], binary [17]

etc. From the total amount of 24 papers reviewed, 87.5%
have been published in the last decade (see 2), which shows
the rising potential of the quantum computers.

IV. Computational Complexity and Quantum

Computing.

The computational complexity theory classifies compu-
tational problems according to their inherent difficulty,
while the resulting classes are always related to each other.
All the computational problems are studied and solved by
mathematical models, which require certain amount of re-
sources (time, storage, communication, processing power
(number of processors or processor cores), etc. ). With
the development of the quantum computing new complex-
ity classes have been defined. These classes use quantum
computers and quantum computational models based on
quantum mechanics. The two most important quantum
complexity classes are BQP (bounded-error quantum poly-
nomial time) and QMA (Quantum Merlin-Arthur, which is
the analog of the non-probabilistic complexity class NP.

As seen from Fig.1 this cluster is the biggest among
the others reviewed. The models for quantum comput-
ing have been developed during the years in many direc-
tions, starting with the quantum automata [18]–[24] and
going through topics like three size estimation [25], graph
connectivity [26], EQUALITY and AND [27], multivari-
ate polynomial interpolation [28], matrix operations [29],
graphs [30]–[33] and quantum walk [34].

Undoubtedly this cluster takes the first place in the quan-
tum computing and its development is going to be on the
fastest lane and one of the reasons for that is because ev-
ery algorithm and computational model must be evaluated
and classified [35]–[42]. Studying the relationship between
classical and quantum complexity classes might start a
new competition between the two computing technologies,
which might lead to solving harder and harder problems in
less time [43]–[138].

The development of quantum algorithms has been on the
rise in recent years, with some of the guidelines in which
researchers work are Quantum Fourier [128], [139]–[141],
Quantum querying [142]–[145], Boolean problems [146]–
[148], Quantum rejection sampling [149], Advice coins al-
gorithms [150], Algorithms for QMA-complete problems
[151], Tree isomorphism and state symmetrization [152],
Quantum separability problems [153], development of al-
gorithms related with NP-Complete, Exact cover and
3SAT problems [34], [94], [154]–[164], Quantum counterfeit
coin problems [165], match-gate computations [166], [167],
parenthesized testing [168], algorithms for Regulator and
Principal ideal problems [169]–[171], algorithms for quan-
tum branching programs [172], classical theorems quantum
proofs [173], Shor’s algorithm [174]–[177], quantum algo-
rithms for recognition of non-RMM regular languages [178],
approximate counting [179], quantum queries [148] quan-
tum algorithms for hidden subgroup problem [180], quan-
tum walk based search algorithms [113], [136], [169], [181],
[182].

V. Quantum Cryptography and Security.

Cryptography guarantees the security between two par-
ties through encryption of the data, while both parties
must agree on a common key, which must be kept in secret.
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While nowadays this security is based on the mathematical
complexity of the cryptographic algorithms, which is sup-
posed to be revolutionized by the quantum computers [183].
Some requirements for the security mechanisms that have
been developed in the framework of the INDECT research
project have been reviewed in relation with the quantum
cryptography [184].

Researchers use the entanglement property of the quan-
tum systems to achieve secure transmission of data [185]–
[188]. The quantum mechanics find very useful applica-
tions in data transfer systems with oblivious transfer [189],
multi-receiver transfer [190]. In data mining and analytics,
sensitive data-sets could be preserved using new quantum
protocols [191], [192].

A blind quantum computation [193] shows how indepen-
dent participants can perform computational tasks while
holding different resources.

In the recent decade lots of new cryptography algorithms
which include both classical and quantum computational
systems have been developed, and also existing algorithms
have been upgraded, so they could resist on quantum at-
tacks [194]–[229]. Using Simon’s quantum algorithm, an
insecurity can be shown in symmetric-key primitives [230].

A new quantum encryption scheme is shown in [231],
which is based on the solution for the hidden subgroup
problem. Sbastien Kunz-Jacques and Paul Jouguet exam-
ined the consequences of replacing the MAC with cryp-
tographic hash-based signature algorithm for a Quantum
Key Distribution protocol. The Quantum Key Distribu-
tion protocol is wild-spread topic in the quantum cryptog-
raphy [185], [186], [232]–[236].

The homomorphic data encryption enables a new way of
processing where the data does not need to be decrypted
for computational purposes [200], [237], [238]. This quan-
tum fully homomorphic algorithm is based on universal
quantum circuit.

The quantum enigma cipher consists quantum properties
in the physical layer, which prevents Brute force attacks.
In [238] it is shown that the quantum illumination can be
an element of the most simple quantum enigma cipher and
make a difference in error performance.

The goal of quantum resistant cryptography algorithms
is to develop problems, which are difficult to solve with
quantum computers, like Knapsack problem modifications
[239], [240]. New embedding techniques have been used for
image authentication [241] and efficient code-based crypto
systems for embedded platforms [242]. Generating random
numbers with very high speed can be achieved by Quantum
random number generators [243], [244], which increases the
security level of the cryptographic applications. A protocol
which is secure against quantum attacks has been gained by
using this lattice-based hash and lattice-based commitment
scheme [245].

Quantum security is not only limited to cryptographic al-
gorithms and protocols for data transfer, but it looks after
other security aspects like the vulnerabilities of the quan-
tum computers when classical or quantum attack attempts
have been made [246]–[248].

VI. Quantum Algorithms and Data Structures.

Quantum algorithms have developed greatly from quan-
tum mechanical systems simulations to applications in wide
variety of fields [249]. May be the most widely known
application of quantum computing is the factoring [250].
Peter Shor introduces efficient randomized algorithms for
the problems of factoring integers and finding discrete log-
arithms [251]. Shor’s algorithm-based applications are
shown in [252], [253] and [254]. In Michael Feldmann’s
paper a polynomial time deterministic factoring algorithm
is provided [255]. Essential process of quantum comput-
ing systems is the Quantum error correction [256]–[258].
In [259] a pearl-necklace encoder is presented and in [260]
the work extends to an algorithm for turning this en-
coder into a realizable quantum convolutional encoder.
Undoubtedly, holding 30% of the papers in this cluster,
the topic for quantum search is one of the most promis-
ing applications of quantum computers. Starting with the
Grover’s algorithm for database search [261], which shows
the clear advantage over a classical computer for exhaus-
tive search [262]–[269] and how fast quantum search can
be [270]. Continues through the years with different ap-
plications like single query in large databases [271], search
for a needle in a haystack [272], quantum search on struc-
tured problems [273], [274], tree search problem [275], [276],
quantum search with multiple solutions [277]–[280], par-
tial search [281]–[283], scheduling problem [284], quantum
search for a classical object [285], robust search [286], sup-
pressing the transitions of a quantum mechanical system
[287], fixed point quantum search [288], [289], quantum
searching amidst uncertainty [290], super-linear amplitude
amplification [291], quantum algorithm for finding the min-
imum [292], maze problem [293], symmetry detection [294].
In [295] the authors use the Grover’s search algorithm to
define goals for recommendation system and apply it for
wide range of optimization problems.

Grover also provides a framework for design and analysis
of quantum mechanical algorithms in [296], consequence of
which is the search algorithm. He shows a new perspective
for quantum computing algorithms [297] and describes the
quantum search as a resonance phenomena [298].

Tree data structure has a lot of applications mostly be-
cause by definition it is hierarchical data structure. The
Quantum Transverse Field Ising Model [299] gives a gener-
alization to an infinite tree geometry of iTEBD algorithm.
Related interesting application of quantum algorithm for
counting subgraphs parametrized by the tree width of a
graph has been introduced with Non-commutative Subset
Convolution [300]. Regarded as a subclass of quantum an-
nealing, the adiabatic quantum computation does the cal-
culations based on the adiabatic theorem [301]–[316].

Quantum algorithms find a lot of useful application in
graph theory [317]–[328], tomography [329]–[332], lattice-
related problems [333]–[335], group-related problems [336]–
[342], Fourier transform [250], [335], [343], consensus prob-
lems [344], matrix problems [345]–[357], encoding [358]–
[360], quantum separability problem [361], mean approxi-
mation [362], backtracking of one-dimensional cellular au-
tomata [363], quantum satisfiability problem [364], linear
regression [365], pattern matching [366], Boolean func-
tions influences approximation [367], shortest path prob-
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Fig. 3. Distribution of papers published over the years in the Emerg-
ing Technology cluster.

lem [368], quantum game theory [369], solving linear sys-
tems of equations [370], Markov chains [371], recovering
and identity testing [372], hypercube monotonicity test-
ing [373], solitude verification [374], boson sampling [375],
DP and LE problems [376]. New type of quantum ora-
cle [377] provides the oracle access to conditional probabil-
ities associated with an underlying distribution.

Quantum walks are counterparts of Markov chains, and
as such, have algorithmic applications [378]–[384]. Quan-
tum walk on a graph shows an exponentially fast hitting
times over classical counterparts. Such a speed-up has been
presented by the quantum search algorithm based on quan-
tum random walk architecture [385]. The quantum walk is
used for the construction of an algorithm for element dis-
tinctness [386].

VII. Quantum Computing as Emerging

Technology.

Describing quantum computing as emerging technology,
we can say it is a generally new, still underdeveloped and
has very high growth potential, and also it is capable of
changing the status quo. This cluster has more than 10%
of the total number of the articles reviewed in this paper.
74 articles have been reviewed, which could describe Quan-
tum computing as emerging technology and more than 75%
(60 out of 74) of these articles are published in the the
2013-2017 period [387]–[446], which is proof, that with the
development of the technological clusters mentioned above,
the Quantum computing can be categorized as fast grow-
ing technological field with prominent impact. As seen on
3. there is quite fast growth of the number of articles pub-
lished in the past several years - while up to 2010 [447]–[460]
the average number of articles per year is two, the number
is increasing to average of 11 articles per year for the period
from 2012 until 2017.
A decade ago when the quantum computing has not been

on the fast lane of technological growth, the content of
the articles and the focus of the researchers had been con-
nected with the equivalence of the quantum circuits and
problems with the simulation of the systems, implementa-
tion and real-task examples of well-known algorithms from
the 1990s ( Grover’s and Shor’s algorithms). While later,
in the past 5 years, we can see interoperability and inte-
gration between the Quantum computing theory and the

Classical computing theory, in result of which nowadays
there are different platforms [410], [429], frameworks [416],
[420], [436], programming languages [400], [454], which are
used for description of quantum gates, circuits [415], [460],
systems, presenting and performing operations on quantum
systems, or quantum computer simulators [428], [459].

VIII. Logic in Computer Science.

Before the first quantum computer was build for real the
quantum algorithms were sequences of abstract operations.
In [461] some categorical semantics are presented to help
proving some necessary conditions.

There is a certain area of computability in the math-
ematics and theoretical computer science which consists
of problems known to be mathematically non-computable.
Determination of the computability not only by mathe-
matics, but also by quantum-physical principles, gives new
possibilities for solving these types of problems. There are
quantum algorithms which could solve a classically non-
computable decision problems like Hilbert’s tenth problem
or Turing halting problem [462]–[467].

The implementation of every quantum algorithms needs
a programming language and modeling the structure of in-
formation. In [468] the authors map the theory to the Von
Neumann model and to the theory of object-oriented pro-
gramming. They present a language called Quanta. Alter-
native model of quantum computation has been developed
as quantum lambda calculus [469], [470].

A novel quantum programming paradigm has been intro-
duced in 2014 - the superposition of programs, guaranteed
by the universality of quantum walks as a computational
model [471]. Using group theory to exploit the properties of
some synthesis problems could be achieved by transforma-
tion of the problem to multiple-valued optimizations [472].
Since quantum entanglement is one of the key properties
of a quantum system and gives a major difference between
the classical and quantum computing, it is important to
analysis this property deeper [473].

Nondeterministic quantum programs could be repre-
sented by sequential quantum Markov chains over the com-
mon state space. The steps in these programs are executed
nondeterministically in the Hilber space. In [474] the con-
ditions and necessity of the termination of these quantum
programs are being presented.

Bi-simulation is an interesting topic in the theoretical
computer science, where one of two systems simulates the
other and vice versa. In quantum computing to check for
bi-simulation, a verification of the bi-similarity of the re-
sultant configuration must be performed. This check could
be done either by considering strong bi-simulations or by
using symbolic operational semantic at the quantum oper-
ation level [475].

Modeling quantum cryptographic protocols faces few
challenges, one of which is the cryptographic proof. Al-
though the security is based on the quantum mechanical
principles, the design of the quantum protocol is the key el-
ement for building secure cryptographic quantum systems.
A novel notion of Markov quantum chains has been intro-
duced, where probabilistic computation tree login is defined
and model-checking algorithm is developed [476].
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IX. Neural and Evolutionary Computing.

Artificial neural networks (ANN) are the typical and
most advanced systems in the artificial intelligence nowa-
days. The neural networks are artificial representations of
human neurons - the constructive parts of the brain. Every
ANN is a system of processing units, which are very basic
representation of the biological neurons, where every ele-
ment of the network takes the input signal and calculates
some output signal. The output signal is the input for the
next elements in the system.

The perceptrons are the basic computational units in
ANN and they play an important role in the machine learn-
ing. Based on the quantum phase estimation algorithm, a
quantum perceptron model is presented in [477]. KAK is a
family of neural networks, which are able to learn patterns
quickly. Using complex inputs in these networks may give
the possibility of their quantum applications [478]. Using
the recurrent neural networks for optimization of dynami-
cal decoupling for quantum memory [479] is useful for find-
ing solutions, according to a specific hardware, because of
its black box architecture.

Neural networks computations based on Quantum prob-
ability have applications in principal subspace analysis
[480], where the model is based on two quantum physics
concepts - density matrix and Born rule.

Training artificial neural networks requires the determi-
nation of suitable neural network architecture. This pro-
cess is usually achieved empirically, and its automation
could be achieved through a learning procedure for a quan-
tum weightless neural network, where the learning algo-
rithm uses the principle of superposition [481]. In the re-
cent years there are new proposals for quantum neural net-
work architecture, like the quantum perception over the
field [482], Widrow-Hoff learning rule based model [483],
feed-forward neural networks [484].

Sparse distributed representations (SDR) are the way of
how the human brain processes information. Few of the
many neurons are active at the same time, and the pattern
is very significant. The probability amplitude coefficients
in quantum superposition might be represented by using
SDRs [485]. Deep learning has huge impact on the arti-
ficial intelligence recent years. The quantum computing
provides more comprehensive framework for deep learning
than classical computing. An implementation of quantum
training of deep restricted Boltzmann machine has been
reviewed in [486], [487]. The evolutionary computing uses
algorithms inspired by the mechanisms of the biological
evolution ( reproduction, mutation, recombination and se-
lection). Quantum evolutionary programming has mainly
two sub-areas - Quantum Inspired Genetic Algorithms (QI-
GAs) and Quantum Genetic Algorithms (QGAs) [488],
[489]. Quantum computing might have a huge impact on
computational intelligence. Some paradigms could be im-
plemented as quantum programs [490]. The quantum in-
spired evolutionary algorithms, such as HQEA, QHW (Re-
mote and local search), QEA, NQEA, AQDE, GSQPO,
QIGA2, QPSO, msMS DE, perform significantly faster
than a classical genetic algorithms [491]–[501]. The evo-
lutionary algorithms on Ising spin glass instances defined
by Chimera topology are being investigated in [502]. One
of the key tasks in the quantum information technologies

is the Robust control design.

Multi-Observable Quantum Control is a topic within the
chemistry and physics applications of controlling quantum
phenomena. In [503] specific systems are considered to
be Pareto optimized subject to uncertainty, however one
of the concerns is the impact of the fitness disturbance
on algorithmic behavior and several theoretical issues have
been raised. Network intrusion detection systems are soft-
ware systems that monitor networks for malicious activi-
ties. The improvement of the classification accuracy and
malicious detection is achieved by using Bio-Inspired Opti-
mization Algorithms. Using quantum computers can help
building new NIDS where the output results outperform
the classical approach. In [504] a quantum vaccined im-
mune clonal algorithm with the estimation of distribution
algorithm (QVICA-with EDA) is proposed for this task.

X. Systems and Control.

Control systems are surrounding us in almost any life
aspect nowadays. Systems and Control cluster reviewed
in this chapter consists of five sub-areas of the control the-
ory field: Robust control, Optimization problems, Entropy,
Quantum stochastic systems and Identification. Although,
it is a huge research area, the research connected with quan-
tum computing is very limited at the time this paper has
been written.

In general robust control is an approach for controller
design related with some uncertainties, where the stability
of the controlled system is guaranteed together with some
level of performance. Quantum computers are still in their
early stage, and to meet all the targets for a control design
( stability, disturbance rejection, noise rejection, satura-
tion avoidance, performance), is one of the key tasks in the
development of this technology. Sampling-based learning
control method is one of the most promising techniques for
robust control design [505], [506]. This method includes
two steps - training and testing. Performing the training
step, the system is conducted using artificial samples gen-
erated by sampling uncertainty parameters. Later in the
testing step, additional samples are tested for control per-
formance evaluation.

System identification is a process for building mathe-
matical models of complex dynamical systems, based on
system’s input and output. One of the key applications of
the identification process in quantum technology is related
with unknown quantum gate [507]. This is a two stages
procedure. At the first stage series of pure states are given
as an input to the gate. The second stage consists of fast
gate tomography on the output states. The data from the
tomography is later used for the reconstruction of the quan-
tum gate. One of the fundamental problems in the physics
of complex systems is the quantification of the complexity
of the network. In [508] it is shown that the network’s von
Neumann entropy for a quantum network is non-decreasing
at the consensus limit. Another interesting correction has
been found in this paper regarding quantum gossiping al-
gorithms with deterministic coefficients and classical gos-
siping algorithms with random coefficients. The transfer
function gives the corresponding output value for each pos-
sible input value for a control system. When subsystems
are connected in series it is also called cascaded. Generic
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Linear Quantum stochastic systems have pure cascade real-
ization [509]. This realization finds applications in coherent
feedback control and filtering.

Optimization problem is the problem of finding the best
solution out of the feasible ones. In quantum technology
one of the most important optimization problem is find-
ing the stabilizing measurement-free quantum controller
used in fully quantum closed-loop system. The task is
to minimize an infinite-horizon mean square performance
index. This problem is called Coherent Quantum Linear
Quadratic Gaussian (CQLQG) [510]. Another optimiza-
tion problem is the decomposing of unitary matrices ob-
tained by a quantum algorithm to so-called two level ma-
trices [511]. Some recent developments helps reduce the
complexity of the analysis when quantum systems have
been described as networks of quantum nodes. This opens
an area of optimizational tasks like optimizing the con-
vergence rate of the continuous time quantum consensus
algorithm [512], [513] and optimizing the convergence rate
of the gossip algorithm for quantum networks [514], op-
timal configuration of the LQR controller [515], improve-
ment of quantum control fidelity for noisy system [516].
Constraints of the hardware are one of the main difficulties
faced in the process of running quantum algorithms. The
quantum circuits must be compiled for the specific hard-
ware, to make sure that the algorithm has been run prop-
erly. The usage of more flexible quantum circuits makes it
challenging to find the optimal compilation. In [517] the
Quantum Approximate Optimization Algorithm is in focus
for finding the optimal circuit design.

XI. Conclusion.

In this paper an extensive analysis of the quantum infor-
mation technology and the quantum computing was pre-
sented. The classification of the different research areas
where the quantum technology is connected with other
fields gives an idea of what should be expected within the
near future. As it seems most of the research is focused in
the field of theoretical computer science and the computa-
tional complexity. Still there are too few applications of the
quantum computing which could make a significant change
to a specific area. Quantum hardware development would
definitely lead to the broader research in algorithms and
software. We hope the content provides a useful overview
for technically informed readers. We have tried to min-
imize the technical details which could be distracting or
off-putting for a broader audience.
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