

Methods for Eventual Consistency in Collaborative

Editing Systems
Methoden für eventuelle Konsistenz in kollaborativen

Bearbeitungssystemen

Boyan Katsarski, Velko Iltschev

Department of Computer Science: Technical University Sofia, branch Plovdiv

Plovdiv, Bulgaria, Email: katzarsky@gmail.com, iltchev@tu-plovdiv.bg

Abstract — The paper analyzes methods for Operational Transformations and models for Conflict-free Replicated

Data Types in the light of Collaborative Editing Systems and preservation of semantics. Benefits and disadvantages

of each method or model are presented. A proposal for semantic improvement and usability has been made, which

includes: switching atoms from characters to words and adding inverse indexing to the documents with words stored

private dictionaries.

Zusammenfassung — Der Artikel analysiert Methoden für operative Transformationen und Modelle für

konfliktfreie replizierte Datentypen in Hinblick auf kollaborativen Textverarbeitungssystemen und auf Erhaltung der

Semantik. Vor- und Nachteile jeder Methode oder jedes Modells werden vorgestellt. Ein Vorschlag für semantische

Verbesserung und Nutzbarkeit wird gemacht, der Folgendes umfasst: Anwendung ganzer Wörter anstelle einzelner

Zeichen als Atome und Einfügen inverser Indexierung zu den Dokumenten mit den Wörtern, die in den privaten

Wörterbüchern gespeichert sind.

I.! INTRODUCTION

Users of mobile applications expect them to continue
working even when the device is offline or has bad network
connectivity and when the network becomes available again to
synchronize with other devices. Such applications are:
calendars, address-books, password-managers, task-organizers,
etc. Likewise, collaborative work requires several users to edit
the same text document (text, spreadsheet, etc.) at the same
time. Each user's concurrent edits must be reflected on the
others' replicas with minimal delay.

The key requirement here is that the state of the distributed
application needs to be replicated on many devices (nodes).
Each of them modifies the state locally and propagates the
changes optimistically, while continuing to work locally.

The traditional approach to concurrency control -
serializability (with locking), causes the application to become
unusable when network connectivity is poor [1].

For applications, which tolerate temporal network outages,
we must assume that users can make updates concurrently on
different nodes and the resulting conflicts must be resolved.

The naive way to resolve conflicts is to discard some of the
updates when a conflict arises. This approach leads to loss of
updates and potentially data. Another approach is to make the
user manually resolve the conflict using some logic or
common-sense. This is tedious and prone to errors and should
be avoided if possible. Nowadays applications solve this
problem with a range of ad-hoc and application-specific means.

In this paper an overview of the benefits and disadvantages
of the current general-purpose optimistic replication methods
and models has been made. The focus is on Operational
Transformation (OT) methods and Conflict-free Replicated
Data Types (CRDTs) models and their derivatives in the
context of collaborative editing systems. Finally, a proposal for
semantic improvement and usability has been made, which

includes: switching atoms from characters to words and adding
inverse indexing to the documents with words stored private
dictionaries.

II.! STRONG EVENTUAL CONSISTENCY IN PARTITIONED

NETWORKS. COLLABORATION.

A.! Partitioned network

In the real networks, devices (especially mobile ones) go
offline and then online all the time in a random manner, with
periods of no connectivity in-between. Under these conditions
it is impossible to achieve immediate strong consistency of the
replicated state across all devices. Moreover, due to poor
networks, updates made in the originating node may be
received by the other nodes in a different order. While some of
the updates are in transit and some of the replicas are only
converging to the eventual consistent state.

B.! Strong Eventual Consistency (SEC)

Eventual consistency requires that at the end – when all
updates from all the nodes are sent and received – all replicated
states will become the same.

More formally eventual consistency is defined [2] as:

•! Eventual Delivery: Every node will see the updates
made by the other nodes eventually. These updates may
come out-of-order due to network partitioning.

•! Convergence: Same operations should lead to the same
state. Even when received out-of-order.

•! No updates are lost due to concurrent modifications:
A good example for a violation is the “Last Writer
Wins” (LWW) policy.

C.! Collaborative Editing Systems (CES)

In the constraints imposed by partitioned networks and
eventual consistency, collaborative editing becomes a non-

FDIBA Conference Proceedings, vol. 2, 2018 17

trivial task.
Nowadays, collaborative editing systems are based on the

old Operational Transformation principles. There is however a
new approach – CRDT, which is still in research and
development.

III.!APPROACHES TO OPTIMISTIC REPLICATION,

COLLABORATIVE EDITING AND CONFLICT RESOLUTION

A.! Operational Transformation (OT)

The algorithms for Operational Transformation appear first
in the works of Ellis & Gibbs [3] in 1989. Later improvements
are made by M. Ressel et al [4] and C. Sun et al [5]. Most of
them treat a document as a single list of characters.

First OT system is GROVE based on the “dOPT” algorithm
[3]. Currently Google Docs uses a modified version of it.

The essence of OT is that operations made in one node are
transformed on the fly when applied to another node in order to
get the same resulting state. A transformation function is used
to change the position of the incoming operations in order to be
adequately applied to the local text.

For example: if Alice deletes a character at position 5 while
concurrently Bob inserts a character at position 10. Bob’s
operation should be transformed to position 9 = (10-1) when
applied to Alice’s text.

The transformation function must take into account all prior
operations made locally. Moreover, if there are many
concurrent editors, the transformations become exponentially
more complex as the operations come in different order for
each of the users. Complexity is aggravated when an offline
user has produced a big batch of operations and now becomes
online. This makes OT unsuitable for many users working in
poor networks.

Notable implementations are Grove (1989), Jupiter (1995)
and its descendants: Google Docs, Apache Wave (formerly
Google Wave), Etherpad and ShareJs.

 To alleviate the problem with the complexity mentioned
above Google Docs applies restrictions like:

•! Using a single centralized server to sequence the order
of updates.

•! The centralized server makes some or all (details are
proprietary) of the transformations of the operations.

•! Restricted or disabled offline editing capabilities to limit
the transformations produced by stale updates. (Stale
updates lead to recalculation of all the updates made in
the meantime.)

There are a couple of problems with these limitations:

•! A centralized server introduces a single point of failure.

•! A centralized server makes transformations and it needs
to have the operations’ content, which means end-to-
end encryption is impossible.

•! Offline work is limited severely.

B.! Conflict-free Replicated Data Types (CRDT)

Later in 2011 a notion for special replication-ready data
model appears in the works of Shapiro et al [6].

CRDT considers that transforming operation is too complex
and establishes a new model to handle real-time collaboration.
While OT attempts to make non-commuting operations
commute after the fact (via transformation). A better approach
is to design operations to commute in the first place. This
avoids the complexities of OT.

Operations that update the model must follow 3 constraints:

•! Commutative

•! Associative: these two ensure that operations can be
applied in any order

•! Idempotent: an operation can be applied many times
and it yields the same result as if applied once.

The first two (commutative & associative) deal with the
out-of-order problem due to poor networks. The last one
(idempotent) remedies the problem that arises when an
operation is sent to a remote node and no acknowledgement is
returned. At this point it is unclear whether the node has not
received the operation or it has received it but not
acknowledged it or the acknowledgement has been lost in the
network. Hence, CRDT operations need idempotency.

Model with these restrictions makes conflicts impossible
[6], but as a result, the model is monotonically growing (while
leaving tombstones) and designing operations with the above
constraints becomes difficult quickly.

The essence of CRDT is that operations should be designed
following the 3 rules above. A trivial example is an increment-
only counter, which in CRDT terms must be designed as an
array of integers [6]. Each index is owned only by one user.
Write operations are done only to the user’s element but
incoming updates can be received on all elements of the array.
The actual value of the counter is the sum of all elements.

The benefits of the CRDT model include:

•! Built-in strong eventual consistency

•! Possible server-less implementation, providing end-to-
end encryption and no single point of failure

•! Offline capability with no extra complexity.

The disadvantages are:

•! Ever-growing state due to more users added or data
being “deleted” under tombstones [7]. Distributed
garbage collection methods are non-trivial and require
some sort of locking.

•! Difficult to design operations (API) for the CRDT type
(map, set, counter, text document, etc.)

Some of the trivial CRDTs include [8]:

•! Increment-Only Counter

•! PN (increment/decrement) Counter

•! Add-Only Set

•! Directed Graph CRDT

•! Last-Writer-Wins Register

Notable implementations of trivial CRDTs are made by:
Riak (library), Bet365 (counters) and League of Legends
(chat).

Some of the non-trivial CRDTs (plus algorithms) for
collaborative text editing are:

•! WOOT by Oster et al [9]

•! Treedoc by Nuno Preguiça et al [10]

•! RGA by Roh et al [11]

•! Logoot by Weiss et al [12]
They share some common characteristics. A character is
considered an atom in the model (recently a UTF-8 character
which is represented by more than one byte). The structure
varies (linked lists, trees and semi-lattices) but to preserve the
intent of the original editor tombstones [7] are used.
Tombstone is an atom marked as “deleted” and skipped when
presenting to the user. Tombstones are needed when an atom is
deleted but it serves as a reference point for concurrent insert.

18 FDIBA Conference Proceedings, vol. 2, 2018

IV.!CRDTS FOR COLLABORATIVE EDITING

A.! WOOT

The “WithOut Operational Transformation” method is
developed by Oster et al [9] in 2005. The essence of it is that it
treats characters as atoms in a linked list. Each element has id
indicating precedence. Inserts contain <character, id,
preceding-id>. Deletes just mark the id as a tombstone. There
is no update operation but delete and insert. Tombstones are
needed when one user deletes a character while another
concurrently adds a character after it. Generation of IDs is
special (free from vector clocks) so that a sorting function can
linearize the resulting semi-lattice. A filtering function skips
the tombstones when presenting the content to the user.

The method works well even with stale updates and does
not explode in complexity when more users join the editing,
unlike any OT method.

Operations Complexities [11]:

•! Local: Insert O(N2), Delete O(1)

•! Remote: Insert O(N3), Delete O(N)
Main problem is the unbound growth of the document

when lots of edits are submitted over time. The garbage
collection of the tombstones is non-trivial and requires all
nodes to be online to reach a consensus on which tombstones
are not needed anymore and will be physically deleted from the
document. This is aggravated by the fact that the atom is a
character and update of a character is translated to delete and
insert, producing a tombstone in the process. Algorithm of
purging the tombstones is not yet presented.

B.! Treedoc

Treedoc is presented by Nuno Preguiça et al [10] in 2009. It
stores atoms in a balanced binary-tree structure (with the
extension of mini-nodes to handle more than two children
stemming from the same parent). Treedoc is a binary tree
whose paths to nodes are unique indices and ordered totally in
infix order. It tries to keep the tree balanced and executes
explode and flatten routines over a subtree to minimize
tombstones and tree structure overhead. Flattening uses voting
commit, similar to ACID databases’ two-phase commit. Still
uses tombstones.

It works but has issues:

•! if the user appends at the end of the document it
unbalances the tree

•! optimizations for tree flattening require locking which
makes it less usable in poor networks

•! a lesser problem is the overhead of maintaining the tree
structure balanced

C.! RGA

“Replicated Growable Array” is proposed by Roh et al [11]
in 2011 as a Replicated Abstract Data Type (RADT) aiming for
text and data modelling. It treats the text as a linked-list of
linked-lists (text blocks). It uses hash-tables to accelerate the
access and improves garbage collection of tombstones by
adding them to a cemetery.

Operations Complexities [11]:

•! Local: O(N)

•! Remote: O(1)
Complexity is lower than earlier models due to hashes.

Moving text fragments (copy/paste) is simpler because a text-
block is represented by a sub-linked-list. It uses tombstones to
preserve intention as well.

Negatives include the overhead of supporting tombstones
and the problem with inserting new text at the same
coordinates concurrently.

D.! LOGOOT

A CRDT proposed by Weiss [12] in 2009. A Logoot
document is composed by lines defined by: !id, content"
where content is a text line and id - a unique position identifier.
Its structure supports easy deletion and insertion of new line(s).
It does NOT rely on tombstones for consistency. Complexity is
logarithmic. It preserves the meaning of a text line better
because a user can only add/remove a line, not a single
character. Atom ownership is not over a character but a line.

V.! COMMON PROBLEMS PLAGUING THE CRDTS FOR

COLLABORATIVE EDITING

A.! Atom Ownership is over characters

Most of the CRDT for text editing, except Logoot are based
on atoms that are characters. This is a problem because
meaning is contained not within a single character but rather
within words, phrases and sentences. Assigning blame for
badly formed phrases that result in a collaborative editing is
difficult since one word may be edited by couple of users. Only
Logoot hits the mark in that area with having lines of text as
atoms, which is not ideal but at least addresses the issue. A
better solution may be using words or phrases as atoms.

B.! Moving Text Blocks

Moving big blocks of text is a common practice when
editing. Most of the methods above except Logoot suffer from
structural issues when this is done: unbalanced trees and
massive tombstone production. Since current tombstone
garbage collection algorithms require locking commits they
compromise the P2P-ready nature of CRDTs. A better
approach for tombstone purging is needed or a method that
does not even require them.

C.! Search

Yielding the resulting text in CRDTs that are based on
characters and tombstones is another issue because the text is
calculated rather than used “as-is” and searching through
documents based on these models require an extra step before
the actual search.

D.!Concurrently Inserting at the Same Point

It is “solved” in current models by inserting both fragments
while stabilizing the order of the inserts. But this approach will
produce semantically questionable results and is still unsolved
semantically by any of the models.

VI.!CONCLUSION. AND A WAY FORWARD

A step towards a more meaningful policy of semantic
ownership is assigning words or phrases as atoms. Since
phrases are difficult to isolate even using grammatical analysis
for different natural languages – words will be a wiser choice.
An editor can be built on top to color-code the ownership of
words, hence assigning blame for bad phrasing can be done
easily.

Isolating words that are capitalized or punctuated may be
represented as the non-punctuated word with added attributes
to the atom. This will keep the dictionary smaller and more
meaningful, since the words will be in cleaner form.

These word-atoms can form a dictionary that will enable
inverse document storage right from the start. The inverse
indexing will enable built-in search of the edited text. The
document structure will use dictionary-pointers instead of the
words themselves.

The dictionary can be partitioned in sections owned by the
users. Since a section is owned only by one user – it can be

FDIBA Conference Proceedings, vol. 2, 2018 19

garbage collected only by the owner-user and not requiring a
consensus or a lock protocol.

The editor which can be built on top of this proposed data
structure will have to observe user actions such as:

1.! typing or deleting a character
2.! copy-pasting or moving a block of text
3.! deleting a block of text

 Adding or deleting a character (1) in a word will introduce
temporary noise in the dictionary since the currently edited
word will change. But this will affect only the private section
of the user-dictionary. If the word was not owned by the
editing user the new word is created in the user-owned partition
of the dictionary.
 Copy-pasting or cut-pasting (2) a big block of text will not
make a lot of noise. The dictionary will stay mostly unchanged,
except in the case when the text block cuts words in the
middle. The structure made of dictionary-pointer atoms will
reflect the change as in WOOT or LOGOOT while keeping the
atoms count low.
 Deleting a block of text (3) will leave fewer tombstones,
since they are word-pointers not characters.

REFERENCES

[1]! S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency in
partitioned networks,” ACM Computing Surveys, vol. 17, no. 3, pp. 341–

370, Sep. 1985.

[2]! Kleppmann, Martin & R. Beresford, Alastair. (2016). “A Conflict-Free
Replicated JSON Datatype.” IEEE Transactions on Parallel and

Distributed Systems. Volume 28, Issue 10, Oct 2017, pp. 2733-2746.

10.1109/TPDS.2017.2697382.

[3]! C. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,” in
ACM International Conference on Management of Data (SIGMOD),

May 1989, pp. 399-407.

[4]! M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhauer, “An integrating,
transformation-oriented approach to concurrency control and undo in

group editors,” in ACM Conference on Computer Supported

Cooperative Work (CSCW), Nov. 1996, pp. 288-297.

[5]! C. Sun and C. Ellis, “Operational transformation in real-time group

editors: Issues, algorithms, and achievements,” in ACM Conference on

Computer Supported Cooperative Work (CSCW), Nov. 1998, pp. 59-68.

[6]! M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A

comprehensive study of convergent and commutative replicated data

types,” [Research Report] RR-7506, INRIA. 2011, pp.50.

[7]! G. Oster, P. Urso, P. Molli, and A. Imine, “Tombstone transformation

functions for ensuring consistency in collaborative editing systems,”
IEEE Conference on Collaborative Computing: Networking,

Applications and Worksharing - CollaborateCom 2006, Nov 2006,

Atlanta, Georgia, USA, pp.1-10. 10.1109/COLCOM.2006.361867

[8]! Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek Zawirski.

“Conflict-free Replicated Data Types.”, Stabilization, Safety, and
Security of Distributed Systems, Springer Berlin Heidelberg 2011, pp.

386-400.

[9]! Ge ́rald Oster, Pascal Urso, Pascal Molli, Abdessamad Imine. “Real time

group editors without Operational transformation”, [Research Report]

RR-5580, INRIA. 2005, pp. 24.

[10]! Nuno Preguiça, Joan Manuel Marquès, Marc Shapiro, Mihai Leția. “A

commutative replicated data type for cooperative editing”. 29th IEEE
International Conference on Distributed Computing Systems (ICDCS

2009), Jun 2009, Montreal, Québec, Canada. IEEE Computer Society,

pp. 395-403. 10.1109/ICDCS.2009.20.

[11]! Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, Joonwon Lee.

“Replicated abstract data types: Building blocks for collaborative
applications”, Journal of Parallel and Distributed Computing, Volume

71, Issue 3, March 2011, pp. 354-368.

[12]! Steṕhane Weiss, Pascal Urso, Pascal Molli. “Logoot: A Scalable
Optimistic Replication Algorithm for Collaborative Editing on P2P

Networks”. 29th IEEE International Conference on Distributed
Computing Systems - ICDCS 2009, Jun 2009, Montreal, Canada. IEEE,

pp. 404-412.

20 FDIBA Conference Proceedings, vol. 2, 2018

