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Abstract — In this paper building of autonomous agent behaviour is discussed. We study an application
of three different algorithms: greedy algorithm, reinforcement learning and reinforcement learning with
knowledge transfer. We present two case studies that demonstrates the effectiveness of knowledge transfer
approach. Finally we present that transfer learning is an essential mean of agent control learning task.

Zusammenfassung— In diesem Artikel wird der Aufbau des Verhaltens eines autonomen Agenten betrach-
tet. Wir erforschen die Anwendung von drei verschiedenen Algorithmen: Greedy-Algorithmus, bestärkendes
Lernen und bestärkendes Lernen mit Wissenstransfer. Wir stellen zwei Fallstudien vor, die die Effektivität
des Wissensaustauschansatzes demonstrieren. Schließlich stellen wir vor, dass Transferlernen ein wesentliches
Mittel der Lernaufgabe der Agentenkontrolle ist.

I. Introduction

In this paper we present a new approach for transfer
learning trough reinforcement learning.

An essential quality of a cognitive being is its ability to
learn, that is, to gain new knowledge or skills as well as to
improve existing knowledge or skills based on experience.
Cognitive beings are able to cope with situations they have
been previously confronted with as well as they are able to
adapt to new situations sensibly. Thus, when designing an
artificial agent that shall exhibit cognitive qualities—which
we refer to in short as a cognitive agent—one central task
is to develop computational means that enable the agent
to learn. In this paper, we subscribe to one of the most
influential paradigms of machine learning, reinforcement
learning (RL) [1]. Reinforcement learning is very valuable
when the characteristics of the underlying system are not
known and/or difficult to describe or when the environment
of an acting agent is only partially known or completely
unknown.

Agents situated in the real world can perceive a great
variety of information. Two situations are unlikely to lead
to the same perception even if the situations are very simi-
lar. Learning requires the agent to acknowledge important
details in a perception, to recognise commonalities across
situations, and, most importantly, to disregard irrelevant
information. In other words, the ability to learn involves
the ability to abstract. Abstraction enables us to concep-
tualise the surrounding world, to build categories, and to
derive reactions from these categories that can adapt to
different situations. Complex and overly detailed circum-
stances can be reduced to much simpler concepts and not

until then it becomes feasible to deliberate about conclu-
sions to draw and actions to take. Abstract concepts expli-
cate commonalities in different scenes and, thus, can cover
new situations[2] [3] [4].

Transfer learning(TL) or inductive transfer is a research
problem in machine learning that focuses on storing knowl-
edge gained while solving one problem and applying it to
a different but related problem.[5].

The main goal of this paper is to apply transfer learn-
ing trough reinforcement learning in area of building au-
tonomous agent behaviour.

In second part of this paper we will describe the underly-
ing theory of methods in our study: the RL/QL and MDP
, Autonomous Agent behaviour and TL. In addition we will
describe the implementation of our new approach for using
TL in building of Autonomous Agent behaviour. In third
part we describe the experiments and Gathers evidence to
support our hypothesis.

II. Methods and materials

A. Autonomous Agent behaviour

The information about past and current states of the
agent and environment allow the agents to estimate its
own progress. Moreover this information allow the agent
to make the corrections in existing pans if any needed and
even to ma make new plans if it is necessary.

However if the agent makes corrections in the existing
plans too often then this could lead to poor overall per-
formance. Moreover the frequently dropping and building
plans could make the things even worse. Hence it is de-
sirable to reduce (or completely avoid) situations in which
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the agent should changes its mind. There are two main
approaches to do that: the first is to make the changing of
the plans less recourse consuming task and the e second is
to make such plans that are able to deal with volatile envi-
ronment behaviour. This material is concerning the second
approach.

As a key issue in building more efficient plans in rapidly
changing environment we can point the ability of the agent
to makes its plans in accordance not only with past and
current states of the environment but also bearing in mind
the future. To do that the agent needs to predict or forecast
the future st states of the environment. So if we describe
the stat es of the agent and environment as a time series
then the task of making efficient plans will be significantly
aided if the agent could forecasts the future with desirable
accuracy.

An n-tipple (vector) is a result of one cycle of a work of
the agent. It consists of the parameters of the behaviour of
the agent: b(b1, b2, . . . , bn). The data from environment are
collected and transformed into time series in the knowledge
base of the agent.

B. Markov Decision Process

We formulate the transfer learning problem in sequential
decision making domains using the following framework of
Markov Decision Process (MDP) We use the following def-
inition of MDP as a 5-tuple

< S,A, P,R, γ > (1)

where the set of states, set of actions, transition function
and reward function are described. And

P : S ×A→ Π(S) (2)

is a transition function that maps the probability of moving
to a new state given an action and the current state,

R : S ×A→ R (3)

is a reward function. that gives the immediate reward of
taking an action in a state.

And
γ ∈ [0, 1) (4)

is the discount factor.
So the MDP of the agent is described in (1), where S

is the set of states, A is the set of actions, P is transition
function and R is a reward function. The transition func-
tion P maps the the probability of moving to a new state
given an action and the current states is shown in (2). The
reward functions R that gives the immediate reward of tak-
ing an action is described in (3). An the discount factor γ

is bounded as is shown in (4).

C. Reinforcement learning

Reinforcement learning [1] is a popular and effective
method to solve an MDP.

In our work we reference the reinforcement learning al-
gorithm Q-learning as is described in [6]. At each moment
of time, the agent is in a given state s ∈ S, and the agent’s
view is represented by a feature vector. Upon this infor-
mation the agent makes the decision which action a from

a set of all possible actions A to take in order to reach its
goal. The outcome of Q-learning is a Q-function

Q(s, a) (5)

that attaches to any state-action tuple (s, a) the expected
reward over time. We discuss here the overall reward when
starting in s and executing action a. From that Q-function,
one can derive the policy π by always choosing the action
with the highest Q-value:

π(s) = argmax
a∈A

(Q(s, a)) (6)

Under these conditions, Q-learning should converge to
an optimal Q-function

Q∗ = π(s) = argmax
a∈A

(Q(s; a)) (7)

that returns the highest reward for any state-action tuple
(s, a). Hence in this way we establish an optimal policy π∗.

D. Transfer learning

Machine learning and data mining techniques have been
used in numerous real-world applications. An assumption
of traditional machine learning methodologies is the train-
ing data and testing data are taken from the same domain,
such that the input feature space and data distribution
characteristics are the same. However, in some real-world
machine learning scenarios, this assumption does not hold.
There are cases where training data is expensive or diffi-
cult to collect. Therefore, there is a need to create high-
performance learners trained with more easily obtained
data from different domains. This methodology is referred
to as transfer learning.[7]

There is a hierarchical Bayesian framework for transfer in
sequential decision making tasks of transferring two basic
kinds of knowledge [8] [9]

In our paper we uses meta-data (e.g., attribute-value
pairs) associated with each task to learn the expected ben-
efit of transfer given a source-target task pair. An example
of such a metadata is given in [10].

E. Implementation

In our implementation of QL, we claim that if the values
of the P matrix at the beginning of the training are zero,
then we will reach an optimal policy for a final number of
epochs (steps). In order to speed up the training, it is good
that the coefficients of the P matrix are somewhat closer to
the desired policy. This can be achieved through a TL in
a simpler environment (or just a part of the environment).
The classic reinforcement learning consists of finding an
optimal policy for the whole area with high details.

Our approach is based on [10]:

• loading the whole map and scraping all details but
geometric obstacles

• find a reinforcement learning solution for this plain
map

• transfer the Q matrix as predefined knowledge

• load full map and using predefined knowledge enhance
the learning process
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Notation and transfer learning: Let G be the set of all
possible tasks. Let Gsource ⊂ G be a set of source tasks
for which the agent has already learned a policy and let
Gtarget ⊂ G be another set of target tasks to be learned by
the agent. For each task

gi ∈ G, letDiinR
n (8)

is a descriptor of features for the given task.We assume that
gi and Di that are known to the agent.

We define a target task gj ∈ Gtarget, as the goal of the
agent. Thereafter to achieve gj we have to select a task
gi ∈ Gsource such that gi serves as an effective source for
learning gj . For task pair, gi and gj , let

fu(gi, gj) ∈ Rn (9)

denote the function of usefulness. This is the function of
transferring the policy learned in gi to the task gj , where
fu(gi, gj) > 0 indicates positive benefit of transfer, while
fu(gi, gj) < 0 indicates negative benefit of transfer.

We assume that for each pair of tasks (gi, gj) such that
gi, gj ∈ Gsource, the agent could reliable estimate fu(gi, gj).
So the agent can use these estimates to predict the ex-
pected transfer benefit between tasks in Gsource and tasks
in Gtarget.

III. Experiments and results

We Gathers evidence to support the hypothesis that
building of Autonomous Agent behaviour trough transfer
learning will significantly speed up the process of construct-
ing Autonomous Agent behaviour. We claim that building
of Autonomous Agent behaviour trough transfer learning
is more efficient that applying the RL direct approach.

We perform the following experiment: For a given map
we should find an optimal autonomous agent behaviour.
The map is described by its size nxn and complexity rate
Rc. And we chose a start point and final target in this
map. The goal is to find the fastest route from start point
to final target.

We have three methods Greedy Approach, Reinforce-
ment learning without knowledge transfer and Reinforce-
ment learning whit knowledge transfer. And two cases:
Plain map and rough terrain map. Plain map have all ter-
rain with same squares that cost 1 clique and obstacles have
inf cliques. In the rough terrain map the squares could be
1,2,4 or inf cliques each.

We study following algorithms:

• case I - a Greedy Approach(GA)

• case II - Reinforcement Learning without knowledge
transfer(RL)

• case III -Reinforcement Learning with Transfer Learn-
ing(RLTL)

We do the following task: for a given map we need to find
optimal behaviour of an autonomous agent. The agent’s
task is to travel on a closed route for a minimum of time.
The environment is represented as a two-dimensional ob-
stacle map. The map is described by its size nxn and the

Fig. 1. Comparison of three approaches: Greedy Algorithm(GA),
Reinforcement Learning without Transfer Learning(RL) and Rein-
forcement learning with transfer learning(RLTL) om map with size
40x40.

Fig. 2. Compare two algorithms: Reinforcement Learning with-
out Transfer Learning(RL) and Reinforcement learning with transfer
learning(RLTL) on map 2 with size 50x50.

Fig. 3. Compare two algorithms: Reinforcement Learning with-
out Transfer Learning(RL) and Reinforcement learning with transfer
learning(RLTL) on map 3 with size 60x60.
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rate of complexity Rc. And we chose the starting and end-
ing points of the route on this map. The goal is to find the
fastest way from the starting point to the end goal.

We discuss two cases: A simple regular 2D map and a
rough 2D map of the pitch. The regular map has all the
terrains with the same squares that cost 1 click and the
obstacles have inf clicks. In the rough map of the ter-
rain the squares can take 1,2,4 or inf cliques respectively.
The fastest its the route with minimum cliques. Agents
do not know in advance how many cliques each point of
the map takes. So the environment is partially observable.
We have three algorithms: Greedy Approach , Reinforce-
ment learning without knowledge transfer(RL) and Rein-
forcement learning with transfer learning(RLTL) The goal
is to achieve optimal policy: the route which takes mini-
mum cliques from the starting point to the end goal. And
we perform up to 2000 epochs to finding an optimal policy.
As an assessment measure, we use the number of clicks to
reach the goal of the final policy. We use three 2D maps:
map 1 - 40x40, map 2 - 50x50 and map 3 - 60x60. All
maps have random placed obstacles. Moreover all maps
have random placed rough points. The distribution of the
rough points however for all maps is the same.

In the first experiment, we compare the three approaches
on the first map : GA, RL, RLTL. GA does not improve
with time because it does not take into account the un-
observed properties of the terrain. The second and third
experiments show that the RLTL starts much faster and
converges to the optimal policy earlier.

Three different algorithms are presented: Greedy Ap-
proach, Reinforcement Learning and Reinforcement Learn-
ing with Transfer Learning. In two case studies we demon-
strate that knowledge transfer could make more effective
the learning part of building the behaviour of autonomous
agent. From 1 one can see that Greedy Approach does
not improve over time. Figures 2 and 3 shows that Re-
inforcement learning with transfer learning converge much
faster to optimal policy than Reinforcement Learning with-
out Transfer Learning. The RLTL and RL are compared
on three 2D maps: map 1 - 40x40, map 2 - 50x50 and map
3 - 60x60.

IV. Conclusion

The impact of different approaches for building of au-
tonomous agent behaviour is discussed in this paper. Three
different algorithms are presented. greedy algorithm, rein-
forcement learning and reinforcement learning with knowl-
edge transfer. In two case studies we demonstrate that
transfer learning could make more effective the learning
part of building the behaviour of autonomous agent. The
agent is able to adapt to new scenarios trough transferring
knowledge from simplified environments to more complex
maps with rough terrain. Finally we present that transfer
learning is an essential mean of agent control learning task.
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