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Abstract — This work introduces an evolutionary approach for generation of spatial random graphs based on Waxman 

graph and a naive approach for generation of undirected connected weighted graphs in given 2D space. Both 

approaches are experimentally compared by measuring their execution time, graph connectivity and maximal average 

length of edges, proving the practical usability of evolutionary algorithms combined with Waxman graphs for fast 

generation of connected undirected geometric graphs. 

Zusammenfassung — Diese Arbeit stellt ein naiver und ein evolutionärer Ansatz für Generierung von gewichtete 

ungerichtete verbundene Zufallsgraphen. Beide Ansätze werden mit verschiedenen Versuche gegen Ausführungszeit 

der Ecken und maximale Durschnittdistanz der Ecken. Die Versuche werden die Gelegenheit für praktische 

Anwendung der evolutionären Algorithmen für schnelle Generierung von geometrischen Graphen.

 

 

I.  INTRODUCTION  

Different situations such as the Seven Bridges of Königsberg 
problem [2], a network topology, an electric circuit or 
relationships in a social network can be displayed as graphs. 
When implementing such a system, it should be tested with 
different graphs that simulate some special conditions. Those 
graphs, which are generated using probability approaches are 
called random graphs.  

The first studies in the area of random graph generation 
(RGG) are done in the late 1950s by Erdos, Renyi and Gilbert 
[3].  Both Erdos-Reniy and Gilbert models use an iterative way 
to generate graphs given number of nodes and don’t support 
spatial graphs. Later, Waxman presented a model for generation 
of spatial random graphs. Tettamanzi [7], Cordella, De Stefano, 
Fontanella, and Marcelli, [5] worked on evolutionary algorithms 
applied to graphs. Shopov and Markova compared different 
approaches for RGG in [8] and implemented an evolutionary 
approach in [9]. 

The purpose of this work is to update the traditional Waxman 
graph to use an evolutionary approach and to compare it to a 
non-evolutionary approach, where all graphs meeting some 
requirements are generated (naive approach). Both approaches 
are going to be described in theory in part III and IV and 
practically compared in part V of this work. As result, the work 
should prove the practical usability of an evolutionary approach 
combined with Waxman graph. 

II. RELATED WORKS 

Some of the publications, nominated in the introduction were 
combined and elaborated in this work. This part of the work 
introduces them in some detail. 

A. Waxman graph 

Waxman graphs are particular class of random graphs and 
are used for modelling network topologies for evaluating routing 
algorithms (see [1]). Vertices of the graph are randomly 
distributed over a rectangular area. Edges between nodes are 

added randomly using a probability mechanism, where the 
probability that two vertices are connected decreases 
exponentially depending on the Euclidean distance between the 
nodes. The number of vertices N is pre-determined [1]. The edge 
existence probability can be described on the following way: 

 P({u, v}) = e
 !"(#,$)

%&  (1) 

U and v are vertices in the graph, L is the maximum 
Euclidean distance between any two nodes (see [9]), α and β are 
parameters in range (0, 1].  According to [6] larger values of α 
increase the densities of short edges and larger β values increase 
the density of longer edges. Waxman sets the values of α and β 
= 0.4 [1].  For the purpose of this work, values of α and β will 
be preset.  Also, the maximum distance L will be calculated as 
the maximal possible distance between the nodes in the graph.  

B. Evolution in graphs 

EvoGeneSys [5] introduced in multilist structure and 
implemented evolutionary operators to work with it. They 
demonstrated the practical applicability of these methods on 
undirected unweighted graphs. The algorithm described there 
was not applied on weighted graphs with coordinates in 2D 
space. It was also not compared to a brute force approach.  

This work uses as basis Waxman graph and updates the 
algorithms from [5] to work with spatial graphs. The usability of 
the evolutionary algorithm will be proved by comparing it to a 
naive approach, which will be introduced in the next part. 

III. NAIVE APPROACH FOR RGG 

The naive approach for graph generation, elaborated in this 
work, returns all possible graphs that meet specific requirements 
such as number of nodes, edges and width and height of a two 
dimensional space that contains the graph. All returned graphs 
are stored in a list. The algorithm can be split in 4 parts, 
illustrated in the following sections, where for each part is given 
a formula, giving all possible combinations: 
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A. Nodes generation 

This part ensures, that a node is generated for each possible 
point in a rectangular 2D shape with integer values of 
coordinates. The total number of nodes for such a shape is: 

 vertexCount= (xmax-xmin)(ymax-ymin) (2) 

B. Vertex selection 

The vertex selection is used to combine different nodes in a 
graph. After generating all nodes (see previous paragraph), those 
vertices should be grouped in different graphs. For this reason, 
a combination is used- the total number of possibilities for nodes 
in graph is:  

 C(vertexCount, nodesInGraph) (3) 

C. Edges generation 

The purpose of edges generation step is to generate all 
possible edges from set of nodes. According to its definition, 
each edge connects a pair of nodes [4]. So, in this case the total 
number of possible edges for each combination of nodes will be: 

 allEdges = C(nodesInGraph, 2) (4) 

 
For execution of the naive approach, a number of edges in 

graph is passed. To ensure the graph can be connected, this 
number must be at least nodesInGraph – 1 for an undirected 
graph. Then, the total number of edges combinations for a set of 
nodes will be:  

 C (allEdges, numberOfEdges) (5) 

D. Graphs generation 

This step combines node sets and edge sets, in order to 
generate graphs. The following equation gives all possible 
graphs given shape coordinates, number of nodes and number of 
edges: 

graphsCount =C(C((xmax-xmin)(ymax-ymin),  nodesInGraph), 
numberOfEdges)*C((xmax-xmin)(ymax-ymin), nodesInGraph) (6) 

The set of graphs is generated following the pseudocode: 

Fig. 1 Naive approach- pseudocode 

After all having all possible graphs, they can be evaluated 
given criteria and be reordered using it. For example, they can 
be filtered to a subset of connected graphs. However, the main 
generation approach is independent from this evaluation.  

The naive approach has the complexity of 
O(C(C(shape,nodes), edges)* C(shape, nodes), where shape 
describes the number of all possible points with integer 
coordinates in the given 2D space. This complexity in O notation 
shows, that the speed of the algorithm will be significantly 
reduced by changing the total number of nodes in graph, all 
possible points or even the edges count. This assertion will be 
verified in the practical part of the work. 

IV. EVOLUTIONARY APPROACH FOR RGG 

Another approach for RGG is to use the evolutionary 
operators in order to create new graphs. For this purpose, each 
graph should be represented in an appropriate structure, 
allowing an easy mutation and crossover. Such a structure was 
developed the in [5] multilist. For the purpose of this work, the 
multilist has to be updated to support evolutionary operations 
with spatial graphs respectively Waxman graph. 

A. Multilist  

Multilist (or ML) is a structure, used for representing graphs 
is as set of (N) lists, where the main list contains the nodes and 
the other lists (or sublists) contain the edges of a graph (see [5]).  
Each list of edges (or sublist) is connected to a node and contains 
the edges from this node. The size of each sublist depends on the 
position of the node in the main list and contains edges to the 
upcoming nodes from the main list following their order. As an 
example, the edge list from of the first node will contain N-1 
edges. If an edge does not exist, it is represented as null. The 
edge list of the second node contains the connections to all 
upcoming nodes- or N-2 edges.  The last node from the main list 
doesn’t contain a sublist.  Each edge is stored only in one list. 
The described multilist has a triangular structure and an example 
is given in the following figure: 

 

 

(a) (b) 

Fig. 2 (a) graph (b) multilist representation 

The given graph in Fig 1. (a) is converted to a multilist in (b). 
Particulary, if we swap the indexes of vertex A and vertex B, a 
different multilist will be generated. 

B.  Crossover 

Crossover using multilist structure according to [5] is done 
in two steps: each multilist is split in two sublists, sublists are 
swapped between and merged. As result 2 new individuals 
(offspring) is generated. 

1) Split 
To split a multilist, a split point in interval (0 < S < N-1) must 

be selected, where N is the number of vertices and S is the split 
point. The next figure gives an example for split operation of the 
graph in fig. 1 with split point 2: 

naiveGenerator( numberOfNodes, numberOfEdges, 

rectangleCoordinates){ 

Graph[] generatedGraphs; 
//generate all possible nodes in rectangle 

Nodes[] = generateNodes (rectangleCoordinates); 

//generate all combinations of nodes 
nodesForGraph[] = generateNodesCombinations(numberOfNodes, 

nodes); 

for(currentNodes : nodesInGraph){ 
//generate all possible edges between nodes  

edges[] = generateEdges(currentNodes); 

//generate combinations of edges in graph 
edgesCombinations[]= generateEdgesCombinations(edges, 

numberOfEdges); 

for(currentEdges: edgesCombinations){ 
Graph currentGraph = new Graph (currentNodes, 

currentEdges); 

generatedGraphs.add(currentGraph); 
} 

} 

return generatedGraphs; 
} 
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(a) ML representation of 

subgraph 1 

(left multilist) 

(b) ML representation 

of subgraph 2 

(right multilist) 

  

(c) subgraph 1 (d) subgraph 2 
Fig. 3 Split operation 

After splitting the multilist in two, some of the edges of the 
left multilist (colored in fig 2) will get invalid. They are used 
during merge operation to generate edges between the two 
sublists. 

2) Merge 
The purpose of merge operation is to generate a new 

individual by merging 2 multilists, describing 2 subgraphs. The 
merge is done naively by merging the 2 main lists. The left 
sublist contains edges to the right, so each edge has to be updated 
to lead to the new vertex and the distance should be recalculated. 
Important for merge operation is that the total number of 

vertices before splitting and after merging the graph does not 

change. This means that to the left multilist must be merged a 

right multilist with same number of nodes that was previously 

cut from the graph to produce the left multilist. 

C. Mutation 

Mutation is the second evolutionary operator. It appears in a 
random change in the individual (see [5]). Given a mutation rate, 
a mutation should appear not in all individuals. In this work, a 
mutation is done by randomly adding or removing and edge. 
Using the multilist, a random node and random edge from its 
sublist is selected. If the edge is null, a new edge is added. 
Otherwise the edge is removed. 

  
(a) graph (b) multilist 

 
Fig. 4 Mutation 

The previous figure gives an example of mutation in the 
example graph from fig. 1. Due to mutation, the edge b between 
vertices B and D is removed. This also affects the multilist in 
(b). 

D. Selection and fitness function 

Selection operation is used to select a subgroup of 
individuals from the offspring that meet some conditions better 
than others. In the current case, those conditions are graph 
connectivity and maximal average edge length. The number of 
selected individuals is passed as parameter. The selected 
individuals are used as parents for the next epoch of the 
evolutionary algorithm (see Fig. 5). 

Fig. 5 Evolutionary approach- pseudocode  

V. EXPERIMENTS AND RESULTS 

In the practical part of this work both naive and evolutionary 
approach for generation of spatial random graphs were 
implemented in and a comparative analysis of them was done. 
In order to remove any language-dependent differences in 
performance both algorithms were implemented in Java. 
Multilists were represented using hash maps where the start 
vertex is the key and the value is a list of all edges from this 
node. This structure was selected because it uses key-value 
representation. In order to represent a graph, node, edge and 
graph classes were defined. The project was compiled and all 
experiments were executed on the same machine with 8 GB 
RAM and Intel i7-2640M CPU. 

A. Experiment conditions and measures 

In order to compare both algorithms, different experiment 
conditions are used. Dimensions of the rectangle are changed in 
order to test both approaches. Timer is implemented to measure 
the execution time of each algorithm. Maximal average edge 
distance is the other measured metric. Number of edges 
parameter is used only for the naive approach. In order to 
decrease its execution time, for number of edges is chosen to be 
equal to the number of vertices -1. This is used of the condition 
that the generated graphs are connected. In theory, the 
evolutionary approach can generate a connected graph with 
number of edges greater the number of nodes -1, but in most of 
the cases the generated graph contains exactly that number 
edges. This can be controlled by changing alpha and beta 
coefficients, but for the purpose of this work values are fixed. 
As described in [1], the values of α and β are set to be 0.4, the 
mutation rate is set to 0.15 and the offspring count is 20. Two 
values for count of epochs were chosen- 10 and 20. They’re used 
to allow measure the time and result changes caused by the 
change of epochs. The following table shows the experiment 
conditions: 

Experiment 

number 

# of nodes # of edges space 

1 5 4 3x3 

2 5 4 4x4 

3 5 4 4x5 

4 5 4 10x10 

5 5 4 20x20 

Table 1 Experiment conditions- space and graphs 

evolGenerator(initNumGraphs, nodes, coords, alpha, beta, epochs, 

offspringNum, crossoverPoint){ 
Multilist[offspringNum] resultMultilist; 

Graph[] initPopulation = generateInitPopulation(nodes, coords, 

populationCount, alpha, beta); 
Multilist[] initMultilist = convertToMultilist(initPopulation); 

for( 0 .. epcohs){ 

epochResult = doCrossover(resultMultilist, crossoverPoint); 
resultMultilist =doSelection(epochResult, offspringNum); 

} 

Graph[] resultGraphs = convertToGraph(resultMultilist); 
Return  resultGraphs; 

} 
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Experiments 1, 2 and 3 are executed for naive and 
evolutionary approaches. The last 2 experiments were done only 
for evolutionary approach, because the execution of them with a 
naive approach did not finish after 10 minutes. The results and 
conclusions from them are given in the following paragraph. 

B. Results 

The following diagram shows the execution time, measured 
for each of the experiments. Each experiment was executed five 
times. After that, the average time was calculated. 

Fig. 6 Execution time 

The measured time shows the rapid difference in the 
execution time of the naive approach in different cases. This 
behavior is expected and follows the description given in point 
III. The evolutionary approach works faster in 4 of 5 test cases. 
The increasing of space dimensions slows down the execution 
of the evolutionary method too, it’s still much more appropriate 
that the naive approach. For test 4 and 5, the naive execution did 
not finish in 10 minutes and was not measured. The factor which 
increases the execution time of the evolutionary approach is the 
number of epochs. The execution of 20 epochs is almost always 
slower than the execution of 10 epochs. As a conclusion, the 
evolutionary approach is relevant for smaller and bigger spaces. 
The naive is not useable for dimensions over 4x5. 

Fig. 7 Maximal average distance 

Fig. 7 shows the metrics measured for maximal average 
distance on an edge in graph. The naive measures are control 
ones- they show the maximal possible distance. Compared to 
them, the results from the evolution are smaller. However, the 
difference in the results isn’t very big. More, the increased 
number of epochs increased the result in more of the cases. This 
behavior is expected- the purpose of the evolutionary approach 
is not to give the best solution, but to give a result, which is 
optimal for some requirements. Theoretically the evolutionary 
approach can produce same result as the naive approach. The 
missing results for naive approach for experiments 4 and 5 are 
caused by the long execution time which was previously 
explained. 

Analyzing both metrics, the evolutionary approach for 
spatial random graphs generation is applicable for graphs in 
small and bigger spaces. It produces relevant results for shorter 
execution time compared to naive approach which finds the best 
graph answering the distance condition, but it’s not applicable 
for bigger dimensions or bigger graphs. Thus, only the 
evolutionary approach is practically applicable.  

VI. CONCLUSION 

The aim of this work was to create an evolutionary approach 
for generation of spatial random graphs and prove its usability 
in different conditions. For this, the Waxman graph was used. It 
was combined with an evolutionary algorithm using multilists 
following the approach described in [5]. During the work, a 
naive approach, generating all possible graphs given size and 
space was created. Both approaches were implemented and 
compared. The results showed the usability of the introduced 
evolutionary algorithms for generation of larger geometric 
random graphs. Analyzing the values of alpha, beta and 
mutation coefficients can improve the results of the evolution, 
which can be done in another work, related to this. 

ACKNOWLEDGMENT 

I would like to express my gratitude to Dr. Vanya Markova 
and Dr. Vetseslav Shopov for the support and advices during the 
research and the development of this work. 

REFERENCES  

[1] B.M. Waxman, “Routing of multipoint connections”, IEEE Journal on 

Selected Areas in Communications, 1988,  pp 1617-1622 

[2] See Shields, Rob, “Cultural Topology: The Seven Bridges of Königsburg 
1736”, Theory Culture and Society, 2012, pp 29.  

[3] Roughan, Matthew, Tuke, Jonathan and Parsonage, Eric, “Estimating the 

Parameters of the Waxman Random Graph”, eprint arXiv:1506.07974, 

2015 

[4] Robin J. Wilson, Introduction to graph theory, 4th edition, Longman, 1996 

[5] L. Cordella, C. De Stefano, F. Fontanella, A. Marcelli, “EvoGeneSys, a 
New Evolutionary Approach to Graph Generation”, Applied Soft 

Computing 13 (4), 2013 

[6] Naldi, Maurizio, “Connectivity of Waxman topology models”, Journal of 
Computer communications 29.1 ,2005, pp 24-31. 

[7] Tettamanzi A.G.B. “Drawing Graphs with Evolutionary Algorithms”, 
Adaptive Computing in Design and Manufacture. Springer, 1998, London 

[8] Ventseslav Shopov, Vanya Markova, “COMPARISON OF RANDOM 
GRAPH GENERATORS”, Proceedings of the International Conference 
on Information Technologies (InfoTech-2016), 2016 

[9] Ventseslav Shopov, Vanya Markova, “EVOLUTIONARY APPROACH 
FOR SOLVING DYNAMIC GRAPH PROBLEMS”, Proceedings of the 
International Conference on Information Technologies (InfoTech-2016), 
2016 

 

 

0

2

4

6

8

10

12

1 2 3 4 5

T
im

e 
(s

)

Experiment Number

Experiment execution time

Naive Evolutionary, 10 epochs Evolutionary, 20 epochs

0

5

10

15

20

25

1 2 3 4 5

A
v
er

ag
e 

E
d

g
e 

le
n
g
th

Experiment Number

Maximal Average Distance

Naive Evolutionary, 10 epochs Evolutionary, 20 epochs

22 FDIBA Conference Proceedings, vol. 1, 2017


