
Spatial random graphs generation — comparison of

naive and evolutionary approach
Geometrische Zufallsgraphen — Vergleich zwischen naiver und

evolutionärer Ansatz

Blagovest Achanov

MSc Student at Faculty of German Engineering and Industrial Management

 Sofia, Bulgaria, blagovest.achanov@fdiba.tu-sofia.bg

Abstract — This work introduces an evolutionary approach for generation of spatial random graphs based on Waxman

graph and a naive approach for generation of undirected connected weighted graphs in given 2D space. Both

approaches are experimentally compared by measuring their execution time, graph connectivity and maximal average

length of edges, proving the practical usability of evolutionary algorithms combined with Waxman graphs for fast

generation of connected undirected geometric graphs.

Zusammenfassung — Diese Arbeit stellt ein naiver und ein evolutionärer Ansatz für Generierung von gewichtete

ungerichtete verbundene Zufallsgraphen. Beide Ansätze werden mit verschiedenen Versuche gegen Ausführungszeit

der Ecken und maximale Durschnittdistanz der Ecken. Die Versuche werden die Gelegenheit für praktische

Anwendung der evolutionären Algorithmen für schnelle Generierung von geometrischen Graphen.

I. INTRODUCTION

Different situations such as the Seven Bridges of Königsberg
problem [2], a network topology, an electric circuit or
relationships in a social network can be displayed as graphs.
When implementing such a system, it should be tested with
different graphs that simulate some special conditions. Those
graphs, which are generated using probability approaches are
called random graphs.

The first studies in the area of random graph generation
(RGG) are done in the late 1950s by Erdos, Renyi and Gilbert
[3]. Both Erdos-Reniy and Gilbert models use an iterative way
to generate graphs given number of nodes and don’t support
spatial graphs. Later, Waxman presented a model for generation
of spatial random graphs. Tettamanzi [7], Cordella, De Stefano,
Fontanella, and Marcelli, [5] worked on evolutionary algorithms
applied to graphs. Shopov and Markova compared different
approaches for RGG in [8] and implemented an evolutionary
approach in [9].

The purpose of this work is to update the traditional Waxman
graph to use an evolutionary approach and to compare it to a
non-evolutionary approach, where all graphs meeting some
requirements are generated (naive approach). Both approaches
are going to be described in theory in part III and IV and
practically compared in part V of this work. As result, the work
should prove the practical usability of an evolutionary approach
combined with Waxman graph.

II. RELATED WORKS

Some of the publications, nominated in the introduction were
combined and elaborated in this work. This part of the work
introduces them in some detail.

A. Waxman graph

Waxman graphs are particular class of random graphs and
are used for modelling network topologies for evaluating routing
algorithms (see [1]). Vertices of the graph are randomly
distributed over a rectangular area. Edges between nodes are

added randomly using a probability mechanism, where the
probability that two vertices are connected decreases
exponentially depending on the Euclidean distance between the
nodes. The number of vertices N is pre-determined [1]. The edge
existence probability can be described on the following way:

 P({u, v}) = e
 !"(#,$)

%& (1)

U and v are vertices in the graph, L is the maximum
Euclidean distance between any two nodes (see [9]), α and β are
parameters in range (0, 1]. According to [6] larger values of α
increase the densities of short edges and larger β values increase
the density of longer edges. Waxman sets the values of α and β
= 0.4 [1]. For the purpose of this work, values of α and β will
be preset. Also, the maximum distance L will be calculated as
the maximal possible distance between the nodes in the graph.

B. Evolution in graphs

EvoGeneSys [5] introduced in multilist structure and
implemented evolutionary operators to work with it. They
demonstrated the practical applicability of these methods on
undirected unweighted graphs. The algorithm described there
was not applied on weighted graphs with coordinates in 2D
space. It was also not compared to a brute force approach.

This work uses as basis Waxman graph and updates the
algorithms from [5] to work with spatial graphs. The usability of
the evolutionary algorithm will be proved by comparing it to a
naive approach, which will be introduced in the next part.

III. NAIVE APPROACH FOR RGG

The naive approach for graph generation, elaborated in this
work, returns all possible graphs that meet specific requirements
such as number of nodes, edges and width and height of a two
dimensional space that contains the graph. All returned graphs
are stored in a list. The algorithm can be split in 4 parts,
illustrated in the following sections, where for each part is given
a formula, giving all possible combinations:

FDIBA Conference Proceedings, vol. 1, 2017 19

A. Nodes generation

This part ensures, that a node is generated for each possible
point in a rectangular 2D shape with integer values of
coordinates. The total number of nodes for such a shape is:

 vertexCount= (xmax-xmin)(ymax-ymin) (2)

B. Vertex selection

The vertex selection is used to combine different nodes in a
graph. After generating all nodes (see previous paragraph), those
vertices should be grouped in different graphs. For this reason,
a combination is used- the total number of possibilities for nodes
in graph is:

 C(vertexCount, nodesInGraph) (3)

C. Edges generation

The purpose of edges generation step is to generate all
possible edges from set of nodes. According to its definition,
each edge connects a pair of nodes [4]. So, in this case the total
number of possible edges for each combination of nodes will be:

 allEdges = C(nodesInGraph, 2) (4)

For execution of the naive approach, a number of edges in

graph is passed. To ensure the graph can be connected, this
number must be at least nodesInGraph – 1 for an undirected
graph. Then, the total number of edges combinations for a set of
nodes will be:

 C (allEdges, numberOfEdges) (5)

D. Graphs generation

This step combines node sets and edge sets, in order to
generate graphs. The following equation gives all possible
graphs given shape coordinates, number of nodes and number of
edges:

graphsCount =C(C((xmax-xmin)(ymax-ymin), nodesInGraph),
numberOfEdges)*C((xmax-xmin)(ymax-ymin), nodesInGraph) (6)

The set of graphs is generated following the pseudocode:

Fig. 1 Naive approach- pseudocode

After all having all possible graphs, they can be evaluated
given criteria and be reordered using it. For example, they can
be filtered to a subset of connected graphs. However, the main
generation approach is independent from this evaluation.

The naive approach has the complexity of
O(C(C(shape,nodes), edges)* C(shape, nodes), where shape
describes the number of all possible points with integer
coordinates in the given 2D space. This complexity in O notation
shows, that the speed of the algorithm will be significantly
reduced by changing the total number of nodes in graph, all
possible points or even the edges count. This assertion will be
verified in the practical part of the work.

IV. EVOLUTIONARY APPROACH FOR RGG

Another approach for RGG is to use the evolutionary
operators in order to create new graphs. For this purpose, each
graph should be represented in an appropriate structure,
allowing an easy mutation and crossover. Such a structure was
developed the in [5] multilist. For the purpose of this work, the
multilist has to be updated to support evolutionary operations
with spatial graphs respectively Waxman graph.

A. Multilist

Multilist (or ML) is a structure, used for representing graphs
is as set of (N) lists, where the main list contains the nodes and
the other lists (or sublists) contain the edges of a graph (see [5]).
Each list of edges (or sublist) is connected to a node and contains
the edges from this node. The size of each sublist depends on the
position of the node in the main list and contains edges to the
upcoming nodes from the main list following their order. As an
example, the edge list from of the first node will contain N-1
edges. If an edge does not exist, it is represented as null. The
edge list of the second node contains the connections to all
upcoming nodes- or N-2 edges. The last node from the main list
doesn’t contain a sublist. Each edge is stored only in one list.
The described multilist has a triangular structure and an example
is given in the following figure:

(a) (b)

Fig. 2 (a) graph (b) multilist representation

The given graph in Fig 1. (a) is converted to a multilist in (b).
Particulary, if we swap the indexes of vertex A and vertex B, a
different multilist will be generated.

B. Crossover

Crossover using multilist structure according to [5] is done
in two steps: each multilist is split in two sublists, sublists are
swapped between and merged. As result 2 new individuals
(offspring) is generated.

1) Split
To split a multilist, a split point in interval (0 < S < N-1) must

be selected, where N is the number of vertices and S is the split
point. The next figure gives an example for split operation of the
graph in fig. 1 with split point 2:

naiveGenerator(numberOfNodes, numberOfEdges,

rectangleCoordinates){

Graph[] generatedGraphs;
//generate all possible nodes in rectangle

Nodes[] = generateNodes (rectangleCoordinates);

//generate all combinations of nodes
nodesForGraph[] = generateNodesCombinations(numberOfNodes,

nodes);

for(currentNodes : nodesInGraph){
//generate all possible edges between nodes

edges[] = generateEdges(currentNodes);

//generate combinations of edges in graph
edgesCombinations[]= generateEdgesCombinations(edges,

numberOfEdges);

for(currentEdges: edgesCombinations){
Graph currentGraph = new Graph (currentNodes,

currentEdges);

generatedGraphs.add(currentGraph);
}

}

return generatedGraphs;
}

20 FDIBA Conference Proceedings, vol. 1, 2017

(a) ML representation of

subgraph 1

(left multilist)

(b) ML representation

of subgraph 2

(right multilist)

(c) subgraph 1 (d) subgraph 2
Fig. 3 Split operation

After splitting the multilist in two, some of the edges of the
left multilist (colored in fig 2) will get invalid. They are used
during merge operation to generate edges between the two
sublists.

2) Merge
The purpose of merge operation is to generate a new

individual by merging 2 multilists, describing 2 subgraphs. The
merge is done naively by merging the 2 main lists. The left
sublist contains edges to the right, so each edge has to be updated
to lead to the new vertex and the distance should be recalculated.
Important for merge operation is that the total number of

vertices before splitting and after merging the graph does not

change. This means that to the left multilist must be merged a

right multilist with same number of nodes that was previously

cut from the graph to produce the left multilist.

C. Mutation

Mutation is the second evolutionary operator. It appears in a
random change in the individual (see [5]). Given a mutation rate,
a mutation should appear not in all individuals. In this work, a
mutation is done by randomly adding or removing and edge.
Using the multilist, a random node and random edge from its
sublist is selected. If the edge is null, a new edge is added.
Otherwise the edge is removed.

(a) graph (b) multilist

Fig. 4 Mutation

The previous figure gives an example of mutation in the
example graph from fig. 1. Due to mutation, the edge b between
vertices B and D is removed. This also affects the multilist in
(b).

D. Selection and fitness function

Selection operation is used to select a subgroup of
individuals from the offspring that meet some conditions better
than others. In the current case, those conditions are graph
connectivity and maximal average edge length. The number of
selected individuals is passed as parameter. The selected
individuals are used as parents for the next epoch of the
evolutionary algorithm (see Fig. 5).

Fig. 5 Evolutionary approach- pseudocode

V. EXPERIMENTS AND RESULTS

In the practical part of this work both naive and evolutionary
approach for generation of spatial random graphs were
implemented in and a comparative analysis of them was done.
In order to remove any language-dependent differences in
performance both algorithms were implemented in Java.
Multilists were represented using hash maps where the start
vertex is the key and the value is a list of all edges from this
node. This structure was selected because it uses key-value
representation. In order to represent a graph, node, edge and
graph classes were defined. The project was compiled and all
experiments were executed on the same machine with 8 GB
RAM and Intel i7-2640M CPU.

A. Experiment conditions and measures

In order to compare both algorithms, different experiment
conditions are used. Dimensions of the rectangle are changed in
order to test both approaches. Timer is implemented to measure
the execution time of each algorithm. Maximal average edge
distance is the other measured metric. Number of edges
parameter is used only for the naive approach. In order to
decrease its execution time, for number of edges is chosen to be
equal to the number of vertices -1. This is used of the condition
that the generated graphs are connected. In theory, the
evolutionary approach can generate a connected graph with
number of edges greater the number of nodes -1, but in most of
the cases the generated graph contains exactly that number
edges. This can be controlled by changing alpha and beta
coefficients, but for the purpose of this work values are fixed.
As described in [1], the values of α and β are set to be 0.4, the
mutation rate is set to 0.15 and the offspring count is 20. Two
values for count of epochs were chosen- 10 and 20. They’re used
to allow measure the time and result changes caused by the
change of epochs. The following table shows the experiment
conditions:

Experiment

number

of nodes # of edges space

1 5 4 3x3

2 5 4 4x4

3 5 4 4x5

4 5 4 10x10

5 5 4 20x20

Table 1 Experiment conditions- space and graphs

evolGenerator(initNumGraphs, nodes, coords, alpha, beta, epochs,

offspringNum, crossoverPoint){
Multilist[offspringNum] resultMultilist;

Graph[] initPopulation = generateInitPopulation(nodes, coords,

populationCount, alpha, beta);
Multilist[] initMultilist = convertToMultilist(initPopulation);

for(0 .. epcohs){

epochResult = doCrossover(resultMultilist, crossoverPoint);
resultMultilist =doSelection(epochResult, offspringNum);

}

Graph[] resultGraphs = convertToGraph(resultMultilist);
Return resultGraphs;

}

FDIBA Conference Proceedings, vol. 1, 2017 21

Experiments 1, 2 and 3 are executed for naive and
evolutionary approaches. The last 2 experiments were done only
for evolutionary approach, because the execution of them with a
naive approach did not finish after 10 minutes. The results and
conclusions from them are given in the following paragraph.

B. Results

The following diagram shows the execution time, measured
for each of the experiments. Each experiment was executed five
times. After that, the average time was calculated.

Fig. 6 Execution time

The measured time shows the rapid difference in the
execution time of the naive approach in different cases. This
behavior is expected and follows the description given in point
III. The evolutionary approach works faster in 4 of 5 test cases.
The increasing of space dimensions slows down the execution
of the evolutionary method too, it’s still much more appropriate
that the naive approach. For test 4 and 5, the naive execution did
not finish in 10 minutes and was not measured. The factor which
increases the execution time of the evolutionary approach is the
number of epochs. The execution of 20 epochs is almost always
slower than the execution of 10 epochs. As a conclusion, the
evolutionary approach is relevant for smaller and bigger spaces.
The naive is not useable for dimensions over 4x5.

Fig. 7 Maximal average distance

Fig. 7 shows the metrics measured for maximal average
distance on an edge in graph. The naive measures are control
ones- they show the maximal possible distance. Compared to
them, the results from the evolution are smaller. However, the
difference in the results isn’t very big. More, the increased
number of epochs increased the result in more of the cases. This
behavior is expected- the purpose of the evolutionary approach
is not to give the best solution, but to give a result, which is
optimal for some requirements. Theoretically the evolutionary
approach can produce same result as the naive approach. The
missing results for naive approach for experiments 4 and 5 are
caused by the long execution time which was previously
explained.

Analyzing both metrics, the evolutionary approach for
spatial random graphs generation is applicable for graphs in
small and bigger spaces. It produces relevant results for shorter
execution time compared to naive approach which finds the best
graph answering the distance condition, but it’s not applicable
for bigger dimensions or bigger graphs. Thus, only the
evolutionary approach is practically applicable.

VI. CONCLUSION

The aim of this work was to create an evolutionary approach
for generation of spatial random graphs and prove its usability
in different conditions. For this, the Waxman graph was used. It
was combined with an evolutionary algorithm using multilists
following the approach described in [5]. During the work, a
naive approach, generating all possible graphs given size and
space was created. Both approaches were implemented and
compared. The results showed the usability of the introduced
evolutionary algorithms for generation of larger geometric
random graphs. Analyzing the values of alpha, beta and
mutation coefficients can improve the results of the evolution,
which can be done in another work, related to this.

ACKNOWLEDGMENT

I would like to express my gratitude to Dr. Vanya Markova
and Dr. Vetseslav Shopov for the support and advices during the
research and the development of this work.

REFERENCES

[1] B.M. Waxman, “Routing of multipoint connections”, IEEE Journal on

Selected Areas in Communications, 1988, pp 1617-1622

[2] See Shields, Rob, “Cultural Topology: The Seven Bridges of Königsburg
1736”, Theory Culture and Society, 2012, pp 29.

[3] Roughan, Matthew, Tuke, Jonathan and Parsonage, Eric, “Estimating the

Parameters of the Waxman Random Graph”, eprint arXiv:1506.07974,

2015

[4] Robin J. Wilson, Introduction to graph theory, 4th edition, Longman, 1996

[5] L. Cordella, C. De Stefano, F. Fontanella, A. Marcelli, “EvoGeneSys, a
New Evolutionary Approach to Graph Generation”, Applied Soft

Computing 13 (4), 2013

[6] Naldi, Maurizio, “Connectivity of Waxman topology models”, Journal of
Computer communications 29.1 ,2005, pp 24-31.

[7] Tettamanzi A.G.B. “Drawing Graphs with Evolutionary Algorithms”,
Adaptive Computing in Design and Manufacture. Springer, 1998, London

[8] Ventseslav Shopov, Vanya Markova, “COMPARISON OF RANDOM
GRAPH GENERATORS”, Proceedings of the International Conference
on Information Technologies (InfoTech-2016), 2016

[9] Ventseslav Shopov, Vanya Markova, “EVOLUTIONARY APPROACH
FOR SOLVING DYNAMIC GRAPH PROBLEMS”, Proceedings of the
International Conference on Information Technologies (InfoTech-2016),
2016

0

2

4

6

8

10

12

1 2 3 4 5

T
im

e
(s

)

Experiment Number

Experiment execution time

Naive Evolutionary, 10 epochs Evolutionary, 20 epochs

0

5

10

15

20

25

1 2 3 4 5

A
v
er

ag
e

E
d

g
e

le
n
g
th

Experiment Number

Maximal Average Distance

Naive Evolutionary, 10 epochs Evolutionary, 20 epochs

22 FDIBA Conference Proceedings, vol. 1, 2017

