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Abstract — In this paper is examined the problem for graph partitioning. An innovative solution of this problem is 

presented, which uses an evolutionary genetic approach combined with one of the first algorithms for graph 

partitioning – Fiduccia-Mattheyses. This solution is theoretically explained and practically implemented. A 

comparative analysis between the evolutionary and the naive approach is also described. 

Zusammenfassung — In diesem Papier wird das Problem für die Graphpartitionierung untersucht. Eine innovative 

Lösung dieses Problem wird vorgestellt, die einen evolütionären genetischen Ansatz mit einem der ersten 

Algorithmen für die Graphpartitionierung  - Fiduccia-Mattheyses kombiniert. Diese Lösung wird theoretisch erklärt 

und praktisch umgesetzt. Eine Vergleichsanalyse zwischen dem evolutionären und dem naiven Ansatz wird ebenfalls 

beschrieben. 

I.  INTRODUCTION 

A. Motivation 

     The graphs are fundamental data structure in computer 

science. When we want to represent our data as a graph and 

the graph become too large to be processed on one machine 

we should divide it into smaller pieces. Here comes the graph 

partitioning. Graph partitioning is used today for example in 

Facebook for friendship recommendation, where the graph 

vertices represent the users and the graph edges the personal 

relationships between them or in Google for PageRank 

computations, where websites are represented by graph 

vertices and the hyperlinks between the websites are 

represented by the graph edge. 

     Graphs that have billions of vertices can become too large 

and this brings a lot of issues. For example the computing of 

the desired partition on a single machine can be difficult due 

to memory or the processing and the finding of the best 

partition can take very long, because of the large amount of 

different partitions combinations. For solving such problems, 

we should determine such graph partitioning algorithm, which 

improves the run-time performance by partitioning, uses less 

memory and has the possibility to process a large amount of 

data. The algorithm should also be competitive with the naive 

methods like random graph partitioning. 

     In the interest of finding such an algorithm the main goal of 

this paper is to study the application of evolutionary approach 

for graph partitioning and to compare it performance with the 

naive approach for graph partitioning. 

B. Related works 

    In 1970 Kerninghan and Lin were maybe the first who 

defined and investigated the graph partitioning problem [2]. 

They invented an algorithm that was improved from Fiduccia 

and Mattheyses in 1982 [3]. Today there are a lot of studies 

and different solutions of the graph partitioning problem. For 

example Shopov and Markova presented the applicability of 

some k-medoids algorithms for graph clustering in the Social 

Network Analysis [8]. A clustering is also partition of vertices, 

but there is no balance constraint and the number of partitions 

k is not given. 

    In the following part the graph concept and the graph 

partitioning problem will be briefly described and related 

works for graph partitioning technics will be overviewed. In 

part three the main methods and algorithms, which will be 

compared in this paper will be presented: the naive approach 

and the evolutionary approach using the Fiduccia-Mattheyses 

algorithm. In the last part some experiments will be described, 

which will are used to compare the evolutionary and the naive 

approaches for graph partitioning. 

II. GRAPH PARTITIONING PROBLEM 

     There are a lot of approaches solving the graph partitioning 

problem such as local search algorithms, obtaining partitions, 

multilevel approach, evolutionary algorithms etc. For the 

achievement of the main goal of this work were used 

algorithms from the area of the local search algorithms and the 

evolutionary algorithms and this is why they will be examined 

in this part.  

     According to [1] the main goal of the local search 

algorithms is to partition a graph by improving the objective 

function (the count of edges, moving between the partitions) 

by moving vertices between the partitions. The main goal of 

the evolutionary algorithms is to find a population of 

candidate solutions (individuals) and to evolve them toward 

better solutions. 

A. Graph theory 

     The graph theory is the study of graphs and their 

properties. It is found from the Swiss mathematician Leonhard 

Paul Euler. [4] 

      A graph is a collection of vertices (points) that are 

connected by edges (lines). A simple graph G consists of a 
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nonempty finite set V(G) of elements called vertices (or 

nodes), and a finite set E(G) of distinct unordered pairs of 

distinct elements of V(G) called edges. We call V(G) the 

vertex set and E(G) the edge set of G. An edge {v, w} is said 

to join the vertices v and w, and is usually abbreviated to vw. 

For example simple graph [4] G whose vertex set V(G) is {w, 

v, w, z} has edge set E(G), consisting of the edges uv, uw, vw 

and wz. In any simple graph there is at most one edge joining 

a given pair of vertices. However, many results that hold for 

simple graphs can be extended to more general objects in 

which two vertices may have several edges joining them. In 

addition, we may remove the restriction that an edge joins two 

distinct vertices, and allow loops - edges joining a vertex to 

itself. The resulting object, in which loops and multiple edges 

are allowed, is called a general graph - or, simply, a graph. 

Thus every simple graph is a graph, but not every graph is a 

simple graph. 

     There are different types of graphs depending on the 

number of edges, number of vertices, interconnectivity, and 

their overall structure. In this work we will talk about 

connected weighted undirected graphs. This means that there 

should be a path between each pair vertices, to each edge 

should be assigned a positive number (weight) and the edges 

should have no direction, they should be bidirectional. (Fig.1) 

 

Fig. 1 Undirected weighted connected graph [4] 

 

B. Graph partitioning 

     The data in the Graph partitioning problem (GPP) is 

presented as a graph G = (V, E). A set of n vertices is 

indicated with V and E indicates a set of n edges, so the graph 

can be partitioned into k partitions under specific criteria. The 

criteria is that each partition should be of about the same size 

and there should be a few connections between them. By 

fulfilling the criteria the capacity of the edges between the 

separate subgraphs should be minimized [5]. This problem is 

hard and its practical solutions are based on different 

approaches, called heuristics, which should solve, learn or 

discover problem, their practical methods are not optimal or 

perfect, but have immediate goals. 

C. Kernighan-Lin algorithm 

    Probably the first, which investigated and defined the graph 

partitioning problem, Kernighan and Lin invented an 

algorithm [2], proposing simple heuristic found to produce 

globally optimal partition by moving vertices from one 

partition to another and to reduce its cost. The simplest version 

of this classic algorithm is to partition the graph into two 

partitions. They start with randomly chosen initial partition. 

Each partition should have about the same number of vertices. 

The vertices between these two partitions are exchanged by 

determining the cut size of each cut stage and the cut, which 

has maximum cut size, is saved.  After all necessary 

exchanges are performed, the best cut, which is saved, is used 

as the output of the algorithm.  

     This idea was improved by Fidducia and Mattheyses in 

1984 and is briefly described in the following subpart. 

D. Fidducia-Mattheyses algorithm 

     Fiduccia and Mattheyses proposed improvements to 

Kernighan-Lin algorithm such that one pass of their version 

can be proved to run in linear time [3]. Like the Kernighan-

Lin method, the Fiduccia-Mattheyses method performs passes 

in which each vertex is cut and moved at most once from one 

partition to another, and the best bisection observed during an 

iteration (if the corresponding reduction in the number of 

edges cut is positive) is used as input for the next iteration. 

However, instead of selecting pairs of vertices, the Fiduccia-

Mattheyses method selects single vertex for movement.  

E. Evolutionary algorithms 

     Evolutionary algorithms are stochastic search and 

optimization heuristics derived from the classic evolution 

theory, which are implemented on computers in the majority 

of cases [7]. The main goal of these algorithms is to select 

only the best individuals from the population, which cover 

specific criteria, and to reproduce only them. In this way the 

descendants will inherit properties only from the best 

individuals and the individuals, which not cover the criteria, 

will disappear. These population dynamics follow the basic 

rule of the Darvin’s theory of evolution, which can be 

described in short as the “survival of the fittest”. 

III. METHODS AND ALGORITHMS 

     In this part will be explained the main two approaches for 

solving the graph partitioning problem, which will be 

compared in this paper: the naive approach and the 

evolutionary approach. We will begin with the naive 

approach. 

A. Naive approach 

      The naive approach is a technique for estimation in which 

the last periods are used as current period’s forecast. This 

method is usually used only for comparison with the forecasts, 

which are generated by better, developed to a high degree of 

complexity, techniques. In this paper it will be compared with 

evolutionary approach for GP. 

1) Algorithm 

     The first part of the naive approach is dividing the vertices 

V of the graph G into all possible even k partitions with 

partition size q. 

 q = V/k   (q ϵ N) (1) 

     The number of all possible partitions p of the graph is equal 

to the combination of all graph vertices n, which should be set 

into q positions, without repetitions. The order of the vertices 

in the partitions is not important. 

 p= C(n,q)=n!/q!(n-q)! (2) 

     After the partitioning the graph into p partitions, we should 

remove the inappropriate ones. Inappropriate partition is 

partition, which contains disconnected subgraphs. We should 

check, if there is a path between each pair vertices in each 

partition and if there is no path, we should remove this 

partition.  

     After this check, if there is only one partition left that 

contains only connected vertices, we accept it as a final 
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partition of graph G and save the result as an output of the 

algorithm. Such a result can exist, if there is only one edge (vn, 

vm) that connects the subgraphs in the best partition. All other 

partitions will contain disconnected subgraphs. 

     If there is more than one partition left after the check for 

disconnected graph, we should find the best partition. The first 

requirement for best partition is fulfilled and the next 

requirement is the partition with the least connections between 

the subgraphs in it is to be found. For this purpose we need to 

calculate the gain g for each partition. The partition gain 

represents the count of vertices neighbors’ nbc, which are 

distributed in the opposite partition. The smaller this count is, 

the less the connection between the subgraphs in the partitions 

are. The goal is to find the partition with the max gain: 

 gmax  = nbcmin (3) 

     When we find the partition with the highest gain, it is set as 

the best partition and will be saved as an end result and output 

of the partitioning of graph G.  

Fig. 2 Naive approach- Pseudo code 

B. Evolutionary genetic approach based on the Fiduccia-

Mattheyses algorithm 

     The main goal of this work is to present and compare with 

the naive approach, a solution of the GPP using evolutionary 

genetic approach, which processed large amount of data and 

improve the run-time performance and memory usage. In this 

subpart will be presented such a solution: the Fidducia-

Mattheyses algorithm used together with evolutionary genetic 

approach. 

     When we use an evolutionary approach, we will need some 

terms, coming from the biology, which will be briefly 

described. 

1) Evolutionary representations and operators 

     As described in [6] population is the number of all of the 

individuals of the same groups, which exist in a particular 

area, and have the capability of interbreeding. It is presented 

by a set of individuals, each of them represented graph k-

partition. Each of these individuals will be created by random 

distribution of the graph vertices, which will create the 

chromosome of the individuals. The best individual from the 

population will be saved by each new generation. In general 

generation means aggregate of the functions and phenomena 

which attend reproduction.  

    As in the nature, as so in the evolutionary algorithm, there 

are constantly new populations and generations. That is why 

we need to set a start parameter for the maximum generation, 

which we want to reach. For example we can set the value of 

the maximum generation equals 100, so we want to find the 

best individual in the period of 100 epochs. When we choose 

the maximum generation that should be reached, we should 

find how big our partition can be. The dividing of the vertices 

V of the graph G into even k partitions should have partition 

size pSize (Eq.1) 

2) Algorithm 

     To get the initial population, which we want to improve, 

we will use the algorithm of Fiduccia-Mattheyses. We start 

with adding random individuals to the first population, created 

by combinations from all graph vertices. The population is an 

array of individuals, containing k-partitions with pSize. Than 

for each individual in this population we want to find the best 

partition. The best partition for each individual is found in the 

following way. Firstly we execute the Fiduccia-Mattheyses 

algorithm for the current individual and calculate its fitness 

value. The fitness value is the cut size - the number of edges, 

which are removed from the graph, so it can be divided into k 

parts. The cut size should be as less as possible. If the fitness 

value of the individual, derived from the Fiduccia-Mattheyses 

(FM) is bigger than the fitness value of the current individual, 

we replaced the genes in the chromosome of the current 

individual with these from the chromosome of the individual 

derived from FM. We iterate the FM for each individual until 

no fitness improvement is found. 

     Now when we have initialized the initial population, we 

can start with its evolution. We will repeat the cycle of 

evolution until maximum generation is reached. Each cycle of 

evolution contains some steps, which will be described in the 

following paragraphs. 

     The first step is the step of the random selection. Here we 

select two random individuals from the population and called 

them parents. From these two parents we want to generate an 

offspring that can evolve. The generation of the offspring 

happens with the usage of the uniform crossover between the 

selected parents, which is the next step in the evolution. 

     During the step of the uniform crossover we want to create 

an individual with mixing ratio between the given parents, 

which enables the parent chromosomes to contribute the gene 

level of the offspring.  First we compared the two parents and 

if they had similar genes, they are added to the new genes of  

Fig. 3 Evolutionary approach- Pseudo code 

the offspring. The mismatched genes are saved as their order 

is permutated. The first half of the mismatched genes goes to 

the first partition and the other half go to the other. In the end 

we get the new offspring. After that we execute the Fiduccia-

Find the number p of all possible partitions of graph G such that p = n!/q!(n-q)! 

For (i := 1 to p) 

        Determine a balanced partition ci of the nodes into sets Ai and Bi with partition 

size = |V|/k = q 

End For 

For (i := to number c) 

    Check connectivity of all vertices in subgraph Ai and subgraph Bi  

       If (Ai OR Bi   contains disconnected vertices) remove ci 

End For 

Let gv is empty list 

For (i := 1 to size of c) 

    Compute gain value g of ci 

    Add g to gv[i] 

End For 

Best partition = the partition with max gain from gv 

  

Initialize population with populationSize = vertices count/k 

    For (i := to populationSize) 

        Create individual 

        Create FM individual as iterate Fiduccia Mattheyses algorithm until the best 

fitness value for the current individual is found 

   While (fitness value of the current individual < fitness value of FM individual) 

            Iterate Fiducciia Mattheyses algorithm until the best fitness value for the 

current individual is found 

       End While 

End For 

Start creating generations 

Generation = 0 

While (Generation < MaxGenerations) 

Select random parents from the current populatin 

Create FM individual as iterate Fiduccia Mattheyses algorithm until the best fitness 

value for the offspring is found 

While (fitness value of the offspring < fitness value of FM individual) 

      Iterate Fiduccia Mattheyses algorithm until the best fitness value for the   

offspring is found 

 End While 

Replace the worst individual from the old population with the offspring 

Increase Generation with 1 

 End While 

 Best partition = the last individual from the population 
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Mattheyses algorithm to the new offspring to find its best 

partition. In the end of the iteration we replaced the worst 

individual from the population (with the lowest fitness value) 

with the offspring. Than we receive the next generation.  

     We repeat this steps until the maximum generation is 

reached. After that we receive the best individual, derived 

from the population, as the optimal graph partition of graph G 

into k partitions. 

IV. EXPERIMENTS AND RESULTS 

     The evolutionary and the naive approaches for solving the 

graph partitioning problem was also practically implemented 

and the programming language that was used is Java. The 

implementation of the algorithms is used for comparison 

between them, because this is the main goal of this paper.  

     As an input value for the algorithms were used undirected, 

weighted, connected graphs with different number of vertices 

and edges between them. The conducted experiments are 

repeated several times for each approach and the differences 

between the execution time are insignificant. The execution 

time in the experiments will be presented in seconds and the 

memory usage in megabytes. The experiments will measure 

the coverage and the efficiency of the two approaches with the 

goal to prove, that the evolutionary approach can work with 

significantly larger graphs than the naive approach, works 

faster than it and uses less memory.  

1) Experiment 1: The first experiment was done with 

relatively small graph that contains 17 vertices and 20 edges. 

This experiment has goal to show that there is a significant 

difference in the execution time and memory usage of the two 

approaches. The results are shown in the following graphic: 

 

Fig. 4 Graph partitioning of graph with small number of vertices  

     As result of this experiment the both approaches output 

right partitions- there are no disconnected vertex in each 

partition. As we can see in the Fig.4 the execution time of the 

evolutionary approach takes an advantage over the naive 

approach with 28.22 seconds, which is 99% faster. The 

difference in memory usage is 38.09 megabytes-the 

evolutionary approach uses ~94% less memory than the naive 

approach.  With this experiment we proved, that the 

evolutionary approach is more efficient than the naive 

approach: it is faster and uses less memory. 

2) Experiment 2: The second experiment was done with a 

graph with large number of vertices and edges: 102 vertices 

and 101 edges and represents central cities in Russia. The goal 

of this experiment is to prove that the evolutionary approach 

can work with significantly larger graphs, but the naive 

approach cannot. The results are shown in the following 

graphic: 

 

 

Fig. 5 Graph partitioning of graph with large number of vertices 

In Fig.5 we can see that the evolutionary approach partition 
graph with large number of vertices for 0.736 seconds and uses 
83 megabytes memory. It also outputs the right partitions- there 
are no disconnected vertex in each partition. The naive 
approach gives no results in this experiment. It was running for 
more than an hour (3600s) and there were no results. The 
reason is that there are a large number of combinations from 
graph vertices, which should be processed, so the naive 
approach can give appropriate results, and this will take a lot of 
time. 

The experiments, which are described in this part, proved 
that the goal of this work is achieved. It was proved, that the 
evolutionary approach can work with significantly larger 
graphs than the naive approach, works faster than it and uses 
less memory. 

V. CONCLUSION 

    The evolutionary approach can be easily adjusted to the 

graph partitioning problem. It has the advantages to change 

and customize any aspect of any given algorithm, which 

makes it more flexible and the progress is measured more 

easily.  In this paper was presented a solution of the GPP using 

an evolutionary genetic approach combined with one of the 

first algorithms for GP-Fiduccia-Mattheyses. Different 

experiments were done, so it was proved that this approach is 

more efficient and has more coverage than the naive approach  
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