
 Graph partitioning – comparison of naive and

evolutionary approach
Graphpartitionierung – Vergleich zwischen naiver und

evolutionärer Ansatz

Vanesa Georgieva

MSc Student at FDIBA, Technical University Sofia

 Sofia, Bulgaria, vanesa.georgieva@fdiba.tu-sofia.bg

Abstract — In this paper is examined the problem for graph partitioning. An innovative solution of this problem is

presented, which uses an evolutionary genetic approach combined with one of the first algorithms for graph

partitioning – Fiduccia-Mattheyses. This solution is theoretically explained and practically implemented. A

comparative analysis between the evolutionary and the naive approach is also described.

Zusammenfassung — In diesem Papier wird das Problem für die Graphpartitionierung untersucht. Eine innovative

Lösung dieses Problem wird vorgestellt, die einen evolütionären genetischen Ansatz mit einem der ersten

Algorithmen für die Graphpartitionierung - Fiduccia-Mattheyses kombiniert. Diese Lösung wird theoretisch erklärt

und praktisch umgesetzt. Eine Vergleichsanalyse zwischen dem evolutionären und dem naiven Ansatz wird ebenfalls

beschrieben.

I. INTRODUCTION

A. Motivation

 The graphs are fundamental data structure in computer

science. When we want to represent our data as a graph and

the graph become too large to be processed on one machine

we should divide it into smaller pieces. Here comes the graph

partitioning. Graph partitioning is used today for example in

Facebook for friendship recommendation, where the graph

vertices represent the users and the graph edges the personal

relationships between them or in Google for PageRank

computations, where websites are represented by graph

vertices and the hyperlinks between the websites are

represented by the graph edge.

 Graphs that have billions of vertices can become too large

and this brings a lot of issues. For example the computing of

the desired partition on a single machine can be difficult due

to memory or the processing and the finding of the best

partition can take very long, because of the large amount of

different partitions combinations. For solving such problems,

we should determine such graph partitioning algorithm, which

improves the run-time performance by partitioning, uses less

memory and has the possibility to process a large amount of

data. The algorithm should also be competitive with the naive

methods like random graph partitioning.

 In the interest of finding such an algorithm the main goal of

this paper is to study the application of evolutionary approach

for graph partitioning and to compare it performance with the

naive approach for graph partitioning.

B. Related works

 In 1970 Kerninghan and Lin were maybe the first who

defined and investigated the graph partitioning problem [2].

They invented an algorithm that was improved from Fiduccia

and Mattheyses in 1982 [3]. Today there are a lot of studies

and different solutions of the graph partitioning problem. For

example Shopov and Markova presented the applicability of

some k-medoids algorithms for graph clustering in the Social

Network Analysis [8]. A clustering is also partition of vertices,

but there is no balance constraint and the number of partitions

k is not given.

 In the following part the graph concept and the graph

partitioning problem will be briefly described and related

works for graph partitioning technics will be overviewed. In

part three the main methods and algorithms, which will be

compared in this paper will be presented: the naive approach

and the evolutionary approach using the Fiduccia-Mattheyses

algorithm. In the last part some experiments will be described,

which will are used to compare the evolutionary and the naive

approaches for graph partitioning.

II. GRAPH PARTITIONING PROBLEM

 There are a lot of approaches solving the graph partitioning

problem such as local search algorithms, obtaining partitions,

multilevel approach, evolutionary algorithms etc. For the

achievement of the main goal of this work were used

algorithms from the area of the local search algorithms and the

evolutionary algorithms and this is why they will be examined

in this part.

 According to [1] the main goal of the local search

algorithms is to partition a graph by improving the objective

function (the count of edges, moving between the partitions)

by moving vertices between the partitions. The main goal of

the evolutionary algorithms is to find a population of

candidate solutions (individuals) and to evolve them toward

better solutions.

A. Graph theory

 The graph theory is the study of graphs and their

properties. It is found from the Swiss mathematician Leonhard

Paul Euler. [4]

 A graph is a collection of vertices (points) that are

connected by edges (lines). A simple graph G consists of a

FDIBA Conference Proceedings, vol. 1, 2017 15

nonempty finite set V(G) of elements called vertices (or

nodes), and a finite set E(G) of distinct unordered pairs of

distinct elements of V(G) called edges. We call V(G) the

vertex set and E(G) the edge set of G. An edge {v, w} is said

to join the vertices v and w, and is usually abbreviated to vw.

For example simple graph [4] G whose vertex set V(G) is {w,

v, w, z} has edge set E(G), consisting of the edges uv, uw, vw

and wz. In any simple graph there is at most one edge joining

a given pair of vertices. However, many results that hold for

simple graphs can be extended to more general objects in

which two vertices may have several edges joining them. In

addition, we may remove the restriction that an edge joins two

distinct vertices, and allow loops - edges joining a vertex to

itself. The resulting object, in which loops and multiple edges

are allowed, is called a general graph - or, simply, a graph.

Thus every simple graph is a graph, but not every graph is a

simple graph.

 There are different types of graphs depending on the

number of edges, number of vertices, interconnectivity, and

their overall structure. In this work we will talk about

connected weighted undirected graphs. This means that there

should be a path between each pair vertices, to each edge

should be assigned a positive number (weight) and the edges

should have no direction, they should be bidirectional. (Fig.1)

Fig. 1 Undirected weighted connected graph [4]

B. Graph partitioning

 The data in the Graph partitioning problem (GPP) is

presented as a graph G = (V, E). A set of n vertices is

indicated with V and E indicates a set of n edges, so the graph

can be partitioned into k partitions under specific criteria. The

criteria is that each partition should be of about the same size

and there should be a few connections between them. By

fulfilling the criteria the capacity of the edges between the

separate subgraphs should be minimized [5]. This problem is

hard and its practical solutions are based on different

approaches, called heuristics, which should solve, learn or

discover problem, their practical methods are not optimal or

perfect, but have immediate goals.

C. Kernighan-Lin algorithm

 Probably the first, which investigated and defined the graph

partitioning problem, Kernighan and Lin invented an

algorithm [2], proposing simple heuristic found to produce

globally optimal partition by moving vertices from one

partition to another and to reduce its cost. The simplest version

of this classic algorithm is to partition the graph into two

partitions. They start with randomly chosen initial partition.

Each partition should have about the same number of vertices.

The vertices between these two partitions are exchanged by

determining the cut size of each cut stage and the cut, which

has maximum cut size, is saved. After all necessary

exchanges are performed, the best cut, which is saved, is used

as the output of the algorithm.

 This idea was improved by Fidducia and Mattheyses in

1984 and is briefly described in the following subpart.

D. Fidducia-Mattheyses algorithm

 Fiduccia and Mattheyses proposed improvements to

Kernighan-Lin algorithm such that one pass of their version

can be proved to run in linear time [3]. Like the Kernighan-

Lin method, the Fiduccia-Mattheyses method performs passes

in which each vertex is cut and moved at most once from one

partition to another, and the best bisection observed during an

iteration (if the corresponding reduction in the number of

edges cut is positive) is used as input for the next iteration.

However, instead of selecting pairs of vertices, the Fiduccia-

Mattheyses method selects single vertex for movement.

E. Evolutionary algorithms

 Evolutionary algorithms are stochastic search and

optimization heuristics derived from the classic evolution

theory, which are implemented on computers in the majority

of cases [7]. The main goal of these algorithms is to select

only the best individuals from the population, which cover

specific criteria, and to reproduce only them. In this way the

descendants will inherit properties only from the best

individuals and the individuals, which not cover the criteria,

will disappear. These population dynamics follow the basic

rule of the Darvin’s theory of evolution, which can be

described in short as the “survival of the fittest”.

III. METHODS AND ALGORITHMS

 In this part will be explained the main two approaches for

solving the graph partitioning problem, which will be

compared in this paper: the naive approach and the

evolutionary approach. We will begin with the naive

approach.

A. Naive approach

 The naive approach is a technique for estimation in which

the last periods are used as current period’s forecast. This

method is usually used only for comparison with the forecasts,

which are generated by better, developed to a high degree of

complexity, techniques. In this paper it will be compared with

evolutionary approach for GP.

1) Algorithm

 The first part of the naive approach is dividing the vertices

V of the graph G into all possible even k partitions with

partition size q.

 q = V/k (q ϵ N) (1)

 The number of all possible partitions p of the graph is equal

to the combination of all graph vertices n, which should be set

into q positions, without repetitions. The order of the vertices

in the partitions is not important.

 p= C(n,q)=n!/q!(n-q)! (2)

 After the partitioning the graph into p partitions, we should

remove the inappropriate ones. Inappropriate partition is

partition, which contains disconnected subgraphs. We should

check, if there is a path between each pair vertices in each

partition and if there is no path, we should remove this

partition.

 After this check, if there is only one partition left that

contains only connected vertices, we accept it as a final

16 FDIBA Conference Proceedings, vol. 1, 2017

partition of graph G and save the result as an output of the

algorithm. Such a result can exist, if there is only one edge (vn,

vm) that connects the subgraphs in the best partition. All other

partitions will contain disconnected subgraphs.

 If there is more than one partition left after the check for

disconnected graph, we should find the best partition. The first

requirement for best partition is fulfilled and the next

requirement is the partition with the least connections between

the subgraphs in it is to be found. For this purpose we need to

calculate the gain g for each partition. The partition gain

represents the count of vertices neighbors’ nbc, which are

distributed in the opposite partition. The smaller this count is,

the less the connection between the subgraphs in the partitions

are. The goal is to find the partition with the max gain:

 gmax = nbcmin (3)

 When we find the partition with the highest gain, it is set as

the best partition and will be saved as an end result and output

of the partitioning of graph G.

Fig. 2 Naive approach- Pseudo code

B. Evolutionary genetic approach based on the Fiduccia-

Mattheyses algorithm

 The main goal of this work is to present and compare with

the naive approach, a solution of the GPP using evolutionary

genetic approach, which processed large amount of data and

improve the run-time performance and memory usage. In this

subpart will be presented such a solution: the Fidducia-

Mattheyses algorithm used together with evolutionary genetic

approach.

 When we use an evolutionary approach, we will need some

terms, coming from the biology, which will be briefly

described.

1) Evolutionary representations and operators

 As described in [6] population is the number of all of the

individuals of the same groups, which exist in a particular

area, and have the capability of interbreeding. It is presented

by a set of individuals, each of them represented graph k-

partition. Each of these individuals will be created by random

distribution of the graph vertices, which will create the

chromosome of the individuals. The best individual from the

population will be saved by each new generation. In general

generation means aggregate of the functions and phenomena

which attend reproduction.

 As in the nature, as so in the evolutionary algorithm, there

are constantly new populations and generations. That is why

we need to set a start parameter for the maximum generation,

which we want to reach. For example we can set the value of

the maximum generation equals 100, so we want to find the

best individual in the period of 100 epochs. When we choose

the maximum generation that should be reached, we should

find how big our partition can be. The dividing of the vertices

V of the graph G into even k partitions should have partition

size pSize (Eq.1)

2) Algorithm

 To get the initial population, which we want to improve,

we will use the algorithm of Fiduccia-Mattheyses. We start

with adding random individuals to the first population, created

by combinations from all graph vertices. The population is an

array of individuals, containing k-partitions with pSize. Than

for each individual in this population we want to find the best

partition. The best partition for each individual is found in the

following way. Firstly we execute the Fiduccia-Mattheyses

algorithm for the current individual and calculate its fitness

value. The fitness value is the cut size - the number of edges,

which are removed from the graph, so it can be divided into k

parts. The cut size should be as less as possible. If the fitness

value of the individual, derived from the Fiduccia-Mattheyses

(FM) is bigger than the fitness value of the current individual,

we replaced the genes in the chromosome of the current

individual with these from the chromosome of the individual

derived from FM. We iterate the FM for each individual until

no fitness improvement is found.

 Now when we have initialized the initial population, we

can start with its evolution. We will repeat the cycle of

evolution until maximum generation is reached. Each cycle of

evolution contains some steps, which will be described in the

following paragraphs.

 The first step is the step of the random selection. Here we

select two random individuals from the population and called

them parents. From these two parents we want to generate an

offspring that can evolve. The generation of the offspring

happens with the usage of the uniform crossover between the

selected parents, which is the next step in the evolution.

 During the step of the uniform crossover we want to create

an individual with mixing ratio between the given parents,

which enables the parent chromosomes to contribute the gene

level of the offspring. First we compared the two parents and

if they had similar genes, they are added to the new genes of

Fig. 3 Evolutionary approach- Pseudo code

the offspring. The mismatched genes are saved as their order

is permutated. The first half of the mismatched genes goes to

the first partition and the other half go to the other. In the end

we get the new offspring. After that we execute the Fiduccia-

Find the number p of all possible partitions of graph G such that p = n!/q!(n-q)!

For (i := 1 to p)

 Determine a balanced partition ci of the nodes into sets Ai and Bi with partition

size = |V|/k = q

End For

For (i := to number c)

 Check connectivity of all vertices in subgraph Ai and subgraph Bi

 If (Ai OR Bi contains disconnected vertices) remove ci

End For

Let gv is empty list

For (i := 1 to size of c)

 Compute gain value g of ci

 Add g to gv[i]

End For

Best partition = the partition with max gain from gv

Initialize population with populationSize = vertices count/k

 For (i := to populationSize)

 Create individual

 Create FM individual as iterate Fiduccia Mattheyses algorithm until the best

fitness value for the current individual is found

 While (fitness value of the current individual < fitness value of FM individual)

 Iterate Fiducciia Mattheyses algorithm until the best fitness value for the

current individual is found

 End While

End For

Start creating generations

Generation = 0

While (Generation < MaxGenerations)

Select random parents from the current populatin

Create FM individual as iterate Fiduccia Mattheyses algorithm until the best fitness

value for the offspring is found

While (fitness value of the offspring < fitness value of FM individual)

 Iterate Fiduccia Mattheyses algorithm until the best fitness value for the

offspring is found

 End While

Replace the worst individual from the old population with the offspring

Increase Generation with 1

 End While

 Best partition = the last individual from the population

FDIBA Conference Proceedings, vol. 1, 2017 17

Mattheyses algorithm to the new offspring to find its best

partition. In the end of the iteration we replaced the worst

individual from the population (with the lowest fitness value)

with the offspring. Than we receive the next generation.

 We repeat this steps until the maximum generation is

reached. After that we receive the best individual, derived

from the population, as the optimal graph partition of graph G

into k partitions.

IV. EXPERIMENTS AND RESULTS

 The evolutionary and the naive approaches for solving the

graph partitioning problem was also practically implemented

and the programming language that was used is Java. The

implementation of the algorithms is used for comparison

between them, because this is the main goal of this paper.

 As an input value for the algorithms were used undirected,

weighted, connected graphs with different number of vertices

and edges between them. The conducted experiments are

repeated several times for each approach and the differences

between the execution time are insignificant. The execution

time in the experiments will be presented in seconds and the

memory usage in megabytes. The experiments will measure

the coverage and the efficiency of the two approaches with the

goal to prove, that the evolutionary approach can work with

significantly larger graphs than the naive approach, works

faster than it and uses less memory.

1) Experiment 1: The first experiment was done with

relatively small graph that contains 17 vertices and 20 edges.

This experiment has goal to show that there is a significant

difference in the execution time and memory usage of the two

approaches. The results are shown in the following graphic:

Fig. 4 Graph partitioning of graph with small number of vertices

 As result of this experiment the both approaches output

right partitions- there are no disconnected vertex in each

partition. As we can see in the Fig.4 the execution time of the

evolutionary approach takes an advantage over the naive

approach with 28.22 seconds, which is 99% faster. The

difference in memory usage is 38.09 megabytes-the

evolutionary approach uses ~94% less memory than the naive

approach. With this experiment we proved, that the

evolutionary approach is more efficient than the naive

approach: it is faster and uses less memory.

2) Experiment 2: The second experiment was done with a

graph with large number of vertices and edges: 102 vertices

and 101 edges and represents central cities in Russia. The goal

of this experiment is to prove that the evolutionary approach

can work with significantly larger graphs, but the naive

approach cannot. The results are shown in the following

graphic:

Fig. 5 Graph partitioning of graph with large number of vertices

In Fig.5 we can see that the evolutionary approach partition
graph with large number of vertices for 0.736 seconds and uses
83 megabytes memory. It also outputs the right partitions- there
are no disconnected vertex in each partition. The naive
approach gives no results in this experiment. It was running for
more than an hour (3600s) and there were no results. The
reason is that there are a large number of combinations from
graph vertices, which should be processed, so the naive
approach can give appropriate results, and this will take a lot of
time.

The experiments, which are described in this part, proved
that the goal of this work is achieved. It was proved, that the
evolutionary approach can work with significantly larger
graphs than the naive approach, works faster than it and uses
less memory.

V. CONCLUSION

 The evolutionary approach can be easily adjusted to the

graph partitioning problem. It has the advantages to change

and customize any aspect of any given algorithm, which

makes it more flexible and the progress is measured more

easily. In this paper was presented a solution of the GPP using

an evolutionary genetic approach combined with one of the

first algorithms for GP-Fiduccia-Mattheyses. Different

experiments were done, so it was proved that this approach is

more efficient and has more coverage than the naive approach

ACKNOWLEDGEMENTS

 I express my gratitude to Dr. Ventseslav Shopov and Dr.
Vanya Markova for many valuable comments and help on a
preliminary draft of this paper.

REFERENCES

[1] C. Schulz, “High quality graph partitioning”, Karlsruher Instituts für
Technologie, 2013, pp 25-31.

[2] B. Kernighan and S. Lin. “An efficient heuristic procedure for
partitioning graphs”, The Bell System Tech J., The Bell System
Technical Journal, February 1970.

[3] Fiduccia, C. M, Mattheyses. R. M., “A linear-time heuristic for
improving network partitions.” 19th Design Automation Conference,
14-16 June 1982.

[4] R. Wilson., Introduction to graph theory, Fourth edition, Addison
Wesley Longman Limited, 1996, pp 8-25

[5] A. Buluç , H. Meyerhenke, I. Safro, P. Sanders, C. Schulz, “Recent
advances in graph partitioning”, Lawrence Berkeley National
Laboratory, November 2016, pp 2-3.

[6] X. Yu, M. Gen, Introduction to evolutionary algorithms, Springer
London Dordrecht Heidelberg New York, 2010, pp 8-26

[7] F. Streichert, “Introduction to evolutionary algorithms”, University of
Tuebingen, April 2002

[8] V. Markova, V. Shopov, “Graph partitioning methods in social network
analysis”, Bulgarian Academy of Sciences, Proceedings of the
International Conference on Information Technologies (InfoTech-2016),
20-21 September 2016, Bulgaria

18 FDIBA Conference Proceedings, vol. 1, 2017

